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THERMODYNAMICS OF INTERNAL COMBUSTION ENGINES 
Without Carnot Axioms

2. PREFACE

Thermodynamics,  as  a  discipline,  has  its  history  and  is  related  to  the 
technology of heat engines. We will consider the processes that occur in internal 
combustion engines and the cycles that take place therein. It seems there are so 
many different works on thermodynamics that one might wonder what a new 
one is needed for.  To understand this question, let's consider the following:

"The change in the ideal Otto air cycle compression ratio is shown by the 
upper curve in Fig. 16-5. Comparing this curve with the corresponding curve for 
a real Otto internal combustion engine (Fig. 16-5) shows that the study of the 
ideal air cycle gives a compression ratio significantly higher than that of a real 
engine, although in general the curves are similar." (Ref. 1. Page 149).
      This fact directly points to the discrepancy between theory and practice. In 
this situation, the necessity of revising the theory and bringing it in line with 
practice  becomes  obvious.  And  is  this  really  necessary  when  we  have  cars, 
planes, rockets,  etc.? But this is  fundamentally a question of the relationship 
between theory and practice.

Only that theory is correct which reflects the properties and relationships of 
the material world.

We say that the law of correspondence is observed, or what we show on 
paper or any other information carrier is identical to what exists in nature.

Any other opinion is fraught with errors and misconceptions, leading to a 
distorted understanding of the world, followed by a subsequent adjusting the 
theory to fit the practice.

We will systematically examine all the processes that make up the power 
cycle of a machine, so that it will become obvious how a heat engine works and 
how it is connected with the properties of the material world. Because we cannot 
invent heat engines as we wish. A heat engine can only include what exists in 
nature, or in other words, a heat engine can only utilize the possibilities given by 
nature.
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                             3. Introduction

              Comparison with the height of a lifted load

Here,  we  have  to  specify  the  methods  we  use  to  illustrate  and  analyze 
thermodynamics.  Thermodynamics  encompasses  two  components:  first,  what 
takes place or proceeds in nature, and second, quantitative representations of 
the  processes  taking  place  in  nature  and  thermal  engines.  The  processes 
examined  by  thermodynamics  are,  in  one  way  or  another,  associated  with 
mechanical work, and the goal of quantitative representations is to determine 
how much work we need to expend, or how much work we can obtain, or what 
gain in work we can achieve, and so forth. To obtain these estimates, we use the 
method of comparison of all the processes under consideration with the height of 
a lifted load. The load is represented by some object existing in nature. If the 
lifting of the load can be accomplished by a person, the falling of the load occurs 
in  nature  independently  of  human  will.  The  processes  investigated  by 
thermodynamics also occur in nature, and by comparing them with the height of 
a lifted load, we bring them or their entirety into a single, common measure of 
work expressed in  the  same units,  which allows  us  to  compare  the  separate 
processes with each other as well as their combinations and totalities. 

Another  extremely  important  property  of  a  lifted  load  is  the  precise 
observance of the laws of conservation. Namely, we can take a certain load and 
lift it to a certain height; then, we release the load, and it begins to fall. But in 
this case, the following takes places: the work done to lift the load takes the form 
of potential energy and is represented as A = gh, where A - mechanical work, g - 
the weight of the load, and h - the height of the lifted load.

 During  the  falling  of  the  load,  work is  released  in  the  form of  kinetic 
energy, and the amount of work released is shown by A = gh. Thus, the law of 
energy conservation is presented as follows: the amount of work expended to lift 
the load is equal to the amount of work obtained during the load’s falling. So by 
demonstrating one of the forms of the law of energy conservation, we indicate 
that we derive this law from nature, and this law and nature possess correlation. 
But here, however, we have to specify under what limiting conditions the law of 
work conservation remains valid.

This question pertains to the physical sense of our actions performed on an 
object. When lifting a load, we are thus taking some amount of energy away 
from the Earth. During the falling of the load, the Earth brings back the energy 
that was taken away.
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 And now, let's assume that we lift  a load and maintain its height for a 
certain period. During this period of time, the Earth undergoes certain changes, 
and the load itself may change somehow. Therefore, the limiting condition for 
the implementation of the law of energy conservation is the execution of actions 
on  material  objects  over  a  short  period  of  time.  Such  a  limiting  condition 
ensures  a  reliable  approximation  to  the  truth  in  understanding  the  nature. 
Hence, by comparing the undergoing processes with the height of a lifted load, 
we can always evaluate them from the point of their adherence to the law of 
energy conservation, both separately and in total.

Now, we need to pause and consider the quantitative or numerical methods 
used in thermodynamics.

 
           4. Numerical Methods Used in Thermodynamics                    

      What is a number? This question remains unclear in modern mathematics, 
and there is a common belief that numbers are virtual and invisible, leading to 
the absence of a concrete definition of a number. Some even hold the view that 
numbers come from a divine source, and so on. Such views of numbers are of 
limited use for understanding thermodynamics in particular and physics as a 
whole, mainly because the concept of numbers is deeply saturated with idealism, 
which can entail false notions about the material world.

That’s why, in order to understand what a number is and what its nature is, 
we  will  start  with  a  materialistic  view  of  numbers,  which  represents  a 
comprehensive generalization of all known mathematical experience. And after 
that we will provide a philosophical definition of a number.

A  number  is  a  philosophical  category  reflecting  the  properties  of  the 
material world.

The  world  presented  to  us  possesses  a  multitude  of  properties.  Let's 
consider some of them. In the material  world,  we have objects  -  bodies that 
possess the property of volume. These bodies exist in space, which, in turn, also 
possesses the property of volume. Thus, the property of volume is common to the 
material world. Numbers, as a reflection of the material world’s properties, also 
possess the property of volume. But now the question arises: how can we see and 
understand this?

To comprehend the nature of numbers, we will undertake a series of actions 
with material objects. For the sake of clearness, let's take a body and a water 
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droplet. Ancient philosophers used to say that the whole world is reflected in a 
water droplet! We will illustrate all actions performed on the body (Fig. 4.1).

Here, we specially specify the most important point - we do not use various 
axioms and postulates.

 We are guided exclusive by the law of correlation.

It is known that numbers have the property of sequence. Therefore, we take 
identical water droplets and arrange them in a sequence as shown in Fig. 4.1, 
Series A). We number them using the digits 1, 2, 3, 4, ..., and our sequence gains 
meaning. The sequence itself is presented as steps, i.e. one number follows the 
other, so in this way we represent the quantity of natural objects. It may seem 
that this is what numbers are. But as a matter of fact, we have shown not the 
number itself but only a set of some units.

Sequence  and  set  form  just  one  of  the  properties  of  numbers.  And  to 
achieve  a  more  comprehensive  understanding  of  what  a  number  is,  we  will 
perform the following.

We will repeat Fig. 4.1, Series A, and place it above Series A, but shifted one 
unit to the right. We can repeat this action as many times as we wish. The result 
of our actions is shown in Fig. 4.2. Now, above any digit, we can see the quantity 
of our units: above the digit 4 we have four water droplets, and to the left of the 
digit we also have four units. Thus, choosing any digit, we see an equal number 
both above and to the left of the digit, which creates structure and form. This 
form is called a triangular number. Please note: a triangular number includes 
an orthogonal feature, or a rectangular triangular number.

The  orthogonal  feature  is  one  of  the  properties  of  the  material  world. 
Structure, form, sequence and set are also the properties of the material world. 
A triangular number has one more name – sum.

Now, let's consider the reason behind this phenomenon. Let’s take a unit 
(Series B), add a similar unit to it and read the result above the number 2. Then 
we add one more unit and read the result above the number 3. We can repeat 
this action as many times as we wish. 

This action is called addition, or figuratively speaking, we put all the eggs in 
one basket. But now, we will perform the following action: we will take a glass 
and start filling it drop by drop with water.  But then we will find out that there  
is a certain amount of water in our glass, but we cannot distinguish a single 
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water droplet in it. The process of droplet merger is summation of up to the 
whole, and the final result is called a sum.

Now let’s build a new series of natural quantities (Series C). To construct 
this series, we take a natural quantity - a water droplet - and place it in Series C 
under the number 1. Then we take two water droplets, find their sum, get a new 
droplet  of  water  and  place  it  under  the  number  2.  We  can  continue  this 
operation as many times as we wish. Consisting of the whole natural quantities, 
Series  C  has  certain  features.  The  quantity  located  under  the  number  1  is 
considered to be the initial one and is taken as figure 1. The quantity located 
under the number 2, being a whole quantity, is twice as much as the initial one. 
The quantity located under the number 3 is three times greater than the initial 
one, and so on. All subsequent quantities located under the number N are N 
times greater than the initial one.

Series  C  represents  a  set  of  whole  natural  commensurate  quantities,  or 
units.  But now, there exists a clear mutual correlation between Series C and 
Series B. Series C, i.e. the sum, can be factorized into a triangular number. This 
possibility shows us another property of numbers, called divisibility. In other 
words, we can take any quantity in Series C and divide it into a number of equal 
units. For example, let’s take a whole commensurate quantity – figure 5, divide 
it into five equal parts, and we’ll get a set of whole natural quantities of figure 5, 
where each unit is equal to the initial one  in Series C and Series B alike. Series 
C, or the sum, can be constructed by taking any quantity as a unit, including 
infinitesimal  quantities.  The  law  of  distribution  of  natural  commensurate 
quantities, units, remains constant and is formally expressed as:

                                           A = n + 1
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Now, we are going to investigate a new property of numbers, which is called 
difference. We say “to subtract”, i. e. to perform an action, and that is why we'll 
continue to perform actions with natural quantities. To do this, we'll take the 
natural quantity located above N 9 in Series C and subtract the unit located 
above N 1. We will illustrate this action in Series B.

Series B was constructed as a triangular number, a sum. However, difference is 
an  action  that  is  opposite  to  addition.  Therefore,  we  will  place  a  natural 
quantity-unit to the left of the ninth unit and above the units located above N 8. 
Under these conditions, we can read the result under the units, which is 9-1=8. 
Then we take two units, place them sequentially, one above the other, above the 
units located above N 7. Under these conditions, we can read the result under 
the units, which is 9-2=7. We will continue to perform our actions, but here we 
need to consider the action 9-9 = 0.  This action can popularly be depicted as 
taking place within our field of vision or perception.

Let’s imagine a table with no objects on it. We say that the table is empty, but 
we  can  still  see  the  table  and  its  surface.  In  essence,  this  is  our  field  of 
perception. We have deliberately limited this field to the surface of the table to 
facilitate  the  consideration of  subsequent  actions.  However,  it's  important  to 
remember that our field of perception is the entire world.

Suppose there are nine units in our field of perception. We sequentially perform 
the subtraction action and consequently remove the subtracted natural  units 
from our field of perception. Eventually, we reach a state where there are no 
natural quantities-units.  In formal notation, this state is represented as 9 - 9 = 0. 
The  symbol  0  is  pronounced as  "zero" and means  the  absence  of  anything. 
There is another meaning of the symbol 0, which is used in mathematics: 0 is 
null,  which  originates  from  the  Latin  word  ORIGO,  meaning  "beginning." 
Suppose  we  place  one  natural  quantity  into  our  field  of  perception,  and 
therefore, null signifies the beginning of some actions.

And now, let's look at Fig. 4.3. We see a set of orderly arranged bodies, units, 
forming a square. Let’s draw a line connecting the first and ninth units, and this 
line takes on the meaning of the square's diagonal.

Now, if  we cover everything lying above the square's diagonal,  we will  see a 
triangular  number,  sum.  Then,  if  we  cover  everything  below  the  square's 
diagonal, we will see a triangular number, difference. Pay attention to the units 
lying on the square's diagonal; they belong both to the triangular number - sum 
and the triangular number - difference.



10

This property indicates that the properties of addition and subtraction belong to 
or are attributes of exactly natural quantities.

We have  factorized  the  whole  natural  commensurate  quantities  in  Series  C, 
using the ordered number, into the structure of a square that includes both the 
properties of sum and difference, which, in fact, represents a number. Thus, a 
series of whole natural numbers-squares unambiguously corresponds to a series 
of  whole  natural  commensurate  quantities.   Let's  continue  to  consider  the 
properties of a number.

We can regard the whole natural quantity-unit, from which a natural number-
square is constructed, as an infinitesimal quantity. Figuratively, we can think 
that as a natural number-square is formed from natural quantities, represented 
by atoms of a certain chemical element. The whole natural number-square will 
be shown as a plane.

In the real world, we encounter objects that have surfaces. A flat number allows 
us to perform calculations of any surfaces, because a flat number encompasses 
all kinds of geometry on a plane, or in other words, a flat number is primary, 
while  geometry  is  secondary.  It  may  seem  that  geometry  is  independent  of 
numbers, since it covers various kinds of construction with the use of a compass 
and a ruler.

Let’s go on considering the properties of numbers. To do this, let's express the 
number shown in Fig. 4.3 as a relatively infinitesimal quantity. We will obtain a 
number-square  consisting  of  cubes.  The  natural  quantity-unit  in  a  series  of 
whole natural numbers represents a sizeable square indicated in Fig. 4.4. The 
series  of  whole  natural  numbers  has   a  cubic  or  lattice  structure,  which 
constitutes one of the properties of the material world. A whole natural number-
square encompasses the properties of both addition and subtraction.
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Now, let's consider the next property of numbers, which is called 
product  or  multiplication.  Multiplication  is  not  an  operation  on  natural 
quantities.  For  example,  if  we  take  any  two  natural  quantities  and  try  to 
multiply  them  by  at  least  two,  we  won't  achieve  four  natural  quantities. 
Therefore, we will  illustrate multiplication as a property of orderly arranged 
bodies.

But first  of all,  we will  investigate the following question: what 
symbols do we use or what does a set "1234..." mean? People have long believed 
that  these  are  numbers.  The  word  "number"  itself  comes  from  the  word 
"numerosity." We use - 0123456789; these are none other than letters, symbols, 
digits that we use to indicate numerosity or a set. Then comes the enumerated 
sequence  and then  -  counting.  And now,  actually,  this  is  none  other  than a 
written and oral form of communication, which is used to convey information 
from one  person  to  another.  Understanding  the  question  of  what  a  number 
means at the level of "1234..." is essentially "narrow or primitive", because a set 
is  just  one  property  of  the  material  world  and,  as  a  consequence,  just  one 
property of numbers, since a product or  number is a philosophical category 
that reflects the properties of the material world.
Multiplication... If we look in an arithmetic textbook, we will see the following 
(Fig. 4.5).

                       0     1     2     3     4     5    6     7     8     9                  

          Рис. 4.5

On the number axis, we indicate a segment equal to three units. 
Then, we take similar segments three times.  In this way, we have multiplied 
three  units  by  three,  resulting  in  nine  units.  Such  a  demonstration  of 
multiplication  is  only  an  interpretation,  which  does  not  provide  us  with  a 
complete understanding of multiplication or exponentiation.

That’s  why  we  will  consider  multiplication  as  a  property  of 
orderly  arranged  bodies.  Multiplication  inherently  includes  an  orthogonal 
feature or rectangularity, and this is vividly demonstrated in Fig. 4.4.
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The orthogonal feature reflects the property of Earth's gravitational field 
and other fields. A whole natural number-square identically corresponds to a 
natural commensurate quantity. In formal notation, a number is characterized 
by parameters, where X-axis represents the abscissa or the horizontal direction 
of  number  distribution,  the  Y-axis  represents  the  ordinate  or  the  vertical 
direction of  number  distribution and the  Z-axis  represents  the  z-axis  or  the 
distribution  of  number  by  thickness.  Let's  consider  the  example  mentioned 
above. For this purpose, we’ll take a whole natural commensurate quantity that 
is twice as large as a unit. It identically corresponds to a whole natural number-
square.

In formal notation,  its parametric form looks as follows X = 2 R3,  Y = 2 R3 , 
Z  =  R3,  where  the  symbol  R  denotes  the  proportionality  of  the  number, 
indicating  that  this  formal  notation  belongs  to  the  series  of  whole  natural 
numbers, where each whole unit is a cube.

Let's show the second form of formal notation: X = 2l, Y = 2l, Z = l, where 
the symbol l denotes the proportionality of the number, indicating the length of 
the edge of a single cube.

And correspondingly: R3 = l ×l×l .  
 R2 =  l× l represents the proportionality of a flat number-square or a facet of a 
cube. Thus, the product is directly connected with the number’s structure and 
represents a characteristic of the location of a natural quantity.

The square of  a geometric figure.  This concept is  used in geometry and 
other applications. Let's consider a simple example. In Fig. 4.4, we indicate the 
location of the natural quantity 2 with a colored dot. 

A whole natural  number-square identically corresponds to this  quantity, 
and in parametric form it  is  represented as Y=2R3;  X=2R3;  Z=R3.  In formal 
notation the square looks as follows: 22  R3, and the area of the square is 2R3 × 
2R3 =  4R3.  The  linear  form  of  square  representation  is  X=  4R3,  or  the 
measurement of the square. We convert all our actions on numbers into a linear 
form of number representation or measurement. It is through measurement that 
we can compare: how many times one is greater or smaller than another.
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Let's provide another one more example of product or multiplication (Fig. 
4.6).  We show the whole natural  number 3,  to which the natural  quantity 3 
corresponds. The whole natural number, in parametric form, looks like X=3R3; 
Y=3R3; Z=R3, and is represented as the square 32R3. The square is represented 
as  3R3 ×  3R3 =  32R3.  It  becomes  evident  that  the  orthogonal  feature  is  an 
attribute  of  a  product  and,  consequently,  an attribute  of  the  square  since  it 
belongs to a natural number. Furthermore, the square can be represented as 3R3 

× 3R3 = 9R3.  This is  the linear form of square representation at the level  of 
numerosity or a set of natural units. However, understanding a product as it is 
demonstrated  in  Fig.  4.5  remains  narrow  or  one-sided,  and  therefore 
incomplete. A product is a characteristic of the location of a natural quantity 
and in this connection multiplication is not an operation on numbers.

Let's provide another example of multiplication (Fig. 4.7).

     For this purpose, we take our square and multiply it by its side, with the 
number being correspondingly represented as 3R3 ×  3R3 ×  3R3 =  33R3.  Such 
number is called a cube. The physical meaning of such number is the location of 
the  natural  quantity  3,  which  is  represented  as  X=3R3;  Y=3R3;  Z=3R3.  We 
indicate the location of the natural quantity with a dot. We can show the linear 
form of cube representation as 33R3 = 27R3. Using the orthogonal feature, we can 
show the number to the fourth power as 33R3 × 3R3 = 34R3. To demonstrate the 
number representation, let's perform the substitution 33R3 = F3. And the entire 
number to the fourth power is represented as 3F3, i.e., this is a linear form of the 
number. Thus, we demonstrate the very possibility of performing substitution, 
provided it does not contradict the laws of number distribution.

Let's show the number to the fifth power using the orthogonal attribute F3 × 
3F3 = 32F3, i.e., the number to the fifth power is represented by a square. Let's 
express this number in the following dimension R3; (33+2R3 = 35R3)

In this manner, we can show numbers to any power, and the essential point 
here  is  that  a  product  is  a  characteristic  of  both  the  location  of  a  natural 
quantity and its movement. We demonstrate exactly the property and potential 
of a product, which does not go beyond the three-dimensional representation of 
the number, because the number inherently has a volume, and the product b is 
the number’s attribute.
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Proceeding  in  a  similar  manner,  we  can  demonstrate  numbers  to  any 
power, and the significant aspect here is that a product is a characteristic of both 
the location of a natural quantity and its movement. We highlight exactly the 
property and potential of a product, which does not exceed the boundaries of 
three-dimensional number representation, because the number inherently has a 
volume, and a product is the number’s attribute.

And  now  we  are  going  to  consider  the  next  property  of  the  number  - 
divisibility.

DIVISIBILITY  OF  NUMBERS:  We  derive  the  general  concept  of  a 
fractional number from common notions of the number. In Fig. 4.2, we show the 
interconnection between the quantities located in Series (C) and those in Series 
(B).  By using this  interconnection,  it  is  not  difficult  to  see  that  if  we take a 
quantity equal to one located in Series C under N 5, we can break this unit into 5 
equal parts, with the size of one part being equal to the initial unit under N 1.

Thus, one and the same quantity, in different counting systems, takes on 
different values. For example, a quantity located in Series C under N 5 in Series 
B’s calculus system is represented by five whole quantities equal to the initial 
one.  But  if  we  take  the  quantity  equal  to  one  and  located  under  N  5  as  a 
standard, then the quantity equal to one and located in Series B will  be five 
times  smaller  than  a  given  one,  which  highlights  the  relative  properties  of 
calculus.

A fractional number, like a whole number, is relative and has a numerator 
and a denominator. In the denominator, we indicate how many physical units 
the standard quantity is divided into, and in the numerator, we indicate how 
many units we take from the denominator’s quantity. Thus, both the numerator 
and the denominator are expressed in one and the same standard system and are 
commensurate, while the numerator is represented by a simple number.

In the notation, a fractional number is represented as aR³/bR³, where a < b. 
Such numbers are called the rational fractional numbers.

It becomes evident that the property of number divisibility is a possibility 
inherent in the unit at the beginning - the genome of a number, i.e. dimension. 
To illustrate this, we will construct it in the R³ coordinate system (Fig. 4.8). The 
first division yields R³ / 2, i.e. two halves of a cube, from which we take only one  
half. Figuratively, this can be represented as a transparent vessel in the shape of 
a cube, located horizontally, into which we’ll pour some water.
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The water in the cube will occupy its position, and the water level h in the vessel  
characterizes its fullness.  We take only its filled part, i. e. half of the cube. Next, 
we can perform the following division of the cube, i.e. R³ / 3; R³ / 4; R³ / N; but 
each time, we will obtain R³ / N = hR³, if h → 0, we will get a plane - a square. 
This plane is the ZX plane.  The very concept of a plane is, in fact, a boundary 
between the two media. Obviously, we use properties of the material world, not 
geometric representations.

Let's show the parametric form of divisibility for R³:
 Y = R³ / N; X = 1; Z = 1
 Similarly, Y = 1; X = R³ / N; Z = 1
 Similarly, Y = 1; X = 1; Z = R³ / N
 Similarly,  Y  =  R³  /  N;  X  =  R³  /  N;  Z  =  R³  /  N

Obviously, if N = 2, then Y = R³ / 2; X = R³ / 2; Z = R³ / 2, we’ll get a new 
cube t³, where R³ = 8 t³. By performing this action, we have calculated R³ with 
regard to t³, i. e. we have found the volume of the cube = 8 t³, the area of the  
cube = 8 t³, the length of the cube = 8 t³. We can evidently continue to divide the 
cube, but each time, we will get smaller and smaller cubes ti³ = R³ / n³, for which 
we can calculate a cube and any of its parts with any desired approximation.

Next, we will consider how the property of divisibility of a unit works for 
rational  numbers,  or,  in  essence,  the  law of  difference.  Our conclusion is  as 
follows:  the  number-to-number  ratio  is  an  action  on  quantities  and, 
correspondingly, on numbers.

Numbers,  which  are  called  prime  numbers,  or  numbers  that  cannot  be 
factorized,  are  numbers,  whose  ratio  is  irreducible.  However,  the  result  of 
division of these numbers does not depend on these properties, since when we 
perform the operation of division on these numbers, we pursue a certain goal. 
Let's demonstrate how the division of prime numbers is carried out.

Given:  numbers  a  and  b,  find  the  ratio  of  these  prime  numbers.  Let's 
impose the following condition: a < b,  and give these numbers a parametric 
form:

 YR³ · ZR³ · aXR³
 YR³ · ZR³ · bXR³

In Fig. 4.9, we construct these numbers. We show two numbers, located one 
above the other.
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When considering the physical properties of numbers, we talk about their 
structure  and  form,  but  here  the  content  of  numbers  is  considered,  too. 
Obviously, we are talking about the space represented by volume, but what are 
the properties of this space? We can consider such space as mobile or flowing. 
We can draw an analogy, for example, considering the number’s volume as a 
material liquid, for instance, water.

Now, let's think as follows: let the number aR³ be a vessel filled with water, 
having the shape of the number aR³, and let bR³ be an empty vessel, having the 
shape of the number aR³, while the number bR³ is an empty vessel, having the 
shape of the number bR³. 

We will pour the water from the vessel aR³, which represents a volume, into 
the vessel bR³, provided the vessel bR³ is placed horizontally. The liquid in the 
number bR³ will take on some position, which will be represented in parametric 
form. Each unit in the number bR³ will be represented by a square with a base 
XR × ZR and a height hYR.
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The height h we have found is the ratio of two numbers: aR³/bR³ = hR³. 

Such  a  number  is  a  whole  number  in  terms  of  its  base,  because  it  is 
represented by a square, and it is a fractional number in terms of its height. 
Let's  provide  a  definition  for  an  empty  number:  an  empty  number  is  an 
imaginary number that possesses only a structure, a form of a whole natural 
number.

We can perform the division of a prime number by a full prime number, i.e. 
aR³/bR³ = (1 + h)R³. But in this case, we obtain the sum of two prime numbers: 
aR³ + bR³ = b(1 + h)R³ = CR³. We can also obtain the difference between two 
prime numbers: bR³ - aR³ = b(1 - h)R³. Besides, we can express the number aR³ 
relative to bR³ as follows: bR³ · hR³ = aR³.

And now let's explain the principle of obtaining the number aR³ relative to 
the number bR³. To do this, we'll construct the number bR³ · hR³ (Fig. 4.9).

Let’s think as follows: suppose we have the number bR³, composed of units 
hR³ which are filled with water up to the height h, where h < (YR = 1). In this 
number, there is a partition F, which we smoothly move along the number bR³, 
thus displacing the liquid up to the partition. As a result, the height h increases, 
while an empty number remains beyond the partition.
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As the liquid is displaced, we come to a state where some units up to the 
partition turn out to be complete, i. e. they’ll have the volume R³=1³, while some 
units reach their full volume simultaneously. Let's provide a simple example: 
Given: aR³ = 3R³; bR³= 7R³. Find the ratio aR³/bR³= 3R³/7R³= hR³= 0.428571R³

 aR³=bhR³=0.428571 × 7 = 3R³.
The number bR³ is the smallest whole number multiplied by h that gives the 

whole number aR³. When multiplying the number (b±1)R³ by h, we obtain only 
a fractional number. 

The unit represented as XR × ZR × hYR is not a complete cube, and we can 
transform it in two forms. 

The  first  form is  to  take  the  product  ZR ×  hYR and  obtain  from this 
number  a  square  (ZR·  hYR)1/2=ℓ²  However,  such  a  square  is  a  fractional 
number, and the volume of the body will become XR × Zℓ × Yℓ. But such a 
number has only one edge XR, about which we say that it is represented by a 
whole unit. The remaining two edges, Zℓ and Yℓ, are represented by fractional 
numbers, since ℓ < 1.

The second form of transforming an incomplete cube: let’s take the product 
XR × ZR × hYR and transform it into a cube (XR· ZR·hYR)1/3 = t³. Such a cube 
is a fractional number, since R³=1³>t³ is a different dimension of the number. 
The volumes of these numbers are equal: hR³= XR×Zℓ×Yℓ = t³.

Now let's consider the division of a square by a square. 
The theorem states: Given a² and b², find the ratio of these squares. We 

impose the condition a < b. Then we give these squares a parametric form: for 
a²; Y = R³; X = aR³; Z = aR³. For b²; Y = R³; X = bR³; Z = bR³. Let's perform the 
construction (Fig. 4.10). We’ll think in the following way: let the square a² R³ be 
a vessel filled with water, and the square b² R³ be an empty vessel. Let’s transfer 
the water from the vessel a² R³ to the vessel b² R³, on condition that the vessel b²  
R³ takes a horizontal state. 

The liquid in the vessel b² R³ will take its position, and we'll see the level h, 
or the filling of the number b² R³.

However, the following question arises here: how can we find the quantity 
h? The numbers a² R³ and b² R³ are volumetric bodies, for which the properties 
of numbers - volume, square and length - are correct, they are quantitatively 
equal. That’s why, we represent each number in a linear form, i.e., as a simple 
number of the form nR3,   а2R3 = n1R3; b2R3 = n2R3.

 The ratio will take the following form: n1R3 / n2R3 = hR3.
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In Fig. 4.11, we will demonstrate the construction of rational numbers. To 
do this, let's take any rational number, for example, 3/5. It is read as three-fifths, 
and we will find the construction of this number in the series of whole natural 
numbers.

The  number’s  denominator  is  represented  by  a  whole  natural  quantity 
located in Series A. We will  find this quantity in the series of whole natural 
numbers, it is represented as Y = 5R³; X = 5R³. We will arrange the entire series 
of whole natural numbers vertically (Fig. 4.11), and we'll denote the position of 
the whole natural quantity 5 with a dot. However, we’ll take only three units out 
of these five units, i.e. three-fifths.
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The ratio of these quantities can be shown in two forms. Let's show the first 
form: we will distribute the volume 3R³ within the volume 5R³. However, since 
5R³ is arranged vertically, we will show the filling level (h) for each 5R³ cube. In 
this way, we have shown the rational number 3R³ /  5R³. Now, let's show the 
second form of the rational number, paying attention to the fact that the base is 
X = 5R³; Y = R³. We will distribute 3R³ within the number X = 5R³; Y = R³ and 
show the filling level (h).

But  now,  we  can  see  the  entire  rational  number  as  a  whole.  For  this 
purpose, we connect the point Y = 3R³; X = 5R³ with the beginning of the series 
of whole natural numbers, i.e., X = 0; Y = 0; Z = 1, and get a triangular number 
in the base X = 5R³; Z = R³; Y = R³, with the height Y = 3R³; X = 5R³; Z = R³.  
Please note that the hypotenuse of the triangular number intersects the edge R³ 
in the ratio 3R³ / 5R³ = hR³. Thus, we can see the entire rational number and the 
resulting ratio of two whole natural quantities.

It  becomes  evident  that  we  are  solving  the  fundamental  problem  of 
mathematics, and a series of whole natural numbers serves as a means of solving 
this problem.

 It becomes possible to solve the problem of the ratio of any quantities to 
any quantity.

Let's pay attention to the fact that if we take any natural quantity Y = aR³; 
X = aR³ , place it on Y = nR³, where n represents the number or a set of identical 
units, and specify the location of the natural quantity along X, we can construct, 
on each unit, a triangular rational number of the form R³ / n = hR³. In this way,  
we can find 1/2, 1/3, 1/4, …, 1/n, i. e. fractions of R³. And we can take as many of  
these fractions as we wish. The construction procedure is demonstrated in Fig. 
4.12. It becomes evident that a series of whole natural numbers forms a field of 
rational  numbers.  The  field  of  rational  numbers  is  divided  by  the  square’s 
diagonal, under which all rational numbers of the form aR³ / bR³ = hR³ < 1 are 
located. Lying above the diagonal of the square are all rational numbers of the 
form aR³ / bR³ = hR³ > 1, for example, 4R³ / 2R³ = 2R³ = hR³.

Today,  however,  the  so-called  irrational  numbers  and  transcendental 
numbers are known, but these are only intermediate numbers between rational 
numbers with values of hR³. Let's take a closer look at these numbers. 

We show the construction of divisibility of numbers in Fig.  4.12.  In this 
Figure,  we  demonstrate  the  construction  of  divisibility  of  numbers  using  a 
planar number or a comparator, provided Z = 0.
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Let's take a square with the base 12R². Inside this square, we will take a 
square with the base 3R². The side of this square, along the YR2-axis, is divided 
into three equal parts without a remainder. This results in the construction of a 
triangular number R² / 3R²; X = 3R²; Y = R².

The diagonal of the triangular number divides the side R², X = R²; Y = R², 
in  the  ratio  of  one-third.  Obviously,  we use  the  similarity  of  squares,  which 
arises from the properties of a series of whole natural numbers.

We use the decimal system of notation, and since we have 10 digits, we will 
construct the rational number 10R² and extend the hypotenuse of the triangular 
number R² / 3R² = hR², which will intersect the rational number 10R².

Now, we can read the result in the decimal system, i.e., three tenths (0.3). 
We can see that this result does not fully solve the problem, because we have 
some remainder. However, let’s pay attention to the fact that the square four 
tenths,  which  is  intersected  with  the  extended  hypotenuse  of  the  triangular 
number  R²  /  3R²,  has  the  same  intersection  as  R²  at  the  beginning  of  the 
coordinate  system.  Therefore,  we  repeat  this  construction,  but  for  R²  four 
tenths. Similarly, we divide the side of the square four tenths into 10 equal parts, 
but now these will be hundredths of the square. Again, by taking three squares, 
we obtain (0.33). It becomes evident that we will obtain a new remainder similar 
to the first one, and a subsequent division will give us the same result but for 
thousandths of the unit.

We can continue subsequent divisions as many times as we like, but each 
time we will get the same result, i.e., an infinite approximation to the intersection 
of the side of the rational number 10R² and the hypotenuse of the triangular 
number - h = 0.333....

However, this solution already settles the stated problem, since the essence 
of  the  problem  is  defined  by  the  fact  that  we  come  across  the  presence  of 
irrational numbers. But they do not change our understanding of the unity of 
numbers;  on  the  contrary,  they  reveal  one  more  property  of  numbers  - 
periodicity or cyclicity.

The presented method of number divisibility clearly demonstrates that we 
can find any ratio  of  rational  numbers.  For  example,  the  hypotenuse  of  the 
triangular number R² / 3R² divides all rational numbers below the diagonal of 
the square into three parts. Below the hypotenuse, we can read the result: 6R² / 
3R² = 2R²; 9R² / 3R² = hR², and so on. We can see the result of division: 12R² /  
4R² = hR², where h = 3R², or in the rational form, 3R² / R² = hR².

Returning to the ratio of two squares, it becomes evident that we need to 
express the squares in the linear form and look for a ratio in rational numbers. 

However, this also applies to numbers of the form аnR2 / bnR3 = hR3 ;
a ∙b∙ c…R3

q∙ f ∙u…R3
=¿

hR3, since the principle of number divisibility is common.
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We will illustrate this with a small example. Let's take any rational number, 
for  example,  3/5,  and  construct  this  number  (Fig.  4.13).  To  construct  this 
number,  we'll  use  several  series  of  rational  numbers,  for  example,  5.  We'll 
express such a number in the parametric form. Since in the numerator, we have 
the quantity of Series B, the parametric form is represented as Y = aR³; X = aR³; 
Z = R³. Similarly, we'll show the denominator as Y = bR³; X = bR³; Z = R³.

However, the quantity 3 of the rational number belongs to the square 5, and 
the numerator will take the form Y = 3R³; X = 5R³. Next, we’ll get 3 ∙ 5R³, but 
since  we  take  Z  =  5R³,  the  numerator  has  the  form  3  ∙  5  ∙  5R³,  and  the 
denominator is represented as Y = bR³; X = bR³; Z = bR³, or 5 ∙ 5 ∙ 5R³. Thus, 
the entire rational number is represented as:

3 ∙ 5 ∙ 5R³ / 5 ∙ 5 ∙ 5R³

                       
Y ∙ X ∙ Z R3

Y ∙ X ∙ Z R3
 = 
a ∙b∙ bR3

b ∙b∙ bR3
 = 
3 ∙5 ∙5 R3

5 ∙5 ∙5 R3
 = hR3

The construction is shown in Fig. 4.13.
So, it becomes evident that any cube, except R³, which is expressed relative 

to a series of whole natural numbers, is a rational number.
We have not discussed transcendental numbers because this topic stands 

somewhat apart.  We will  show what transcendental  numbers look like using 
cubic equations as examples, because by specifying what rational and irrational 
numbers  are,  we  have  demonstrated  both  the  property  and  result  of 
manipulations on numbers,  as a consequence of  the properties  of  a series of 
whole natural  numbers resulting from the laws to which the series  of  whole 
natural numbers is subject. 

The number theory is presented briefly; you can familiarize yourself with it 
more thoroughly in Ref. 2.

It is clear that the theory of numbers doesn’t finish here, and further we 
will demonstrate its development using examples of solving different problems.

Let's get acquainted with another property of numbers, which we illustrate 
in Fig. 4.14.
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In Fig. 4.14, the whole natural unit 1 is shown. In Series B, it is represented 
as the relative quantity 5. The whole natural number 1 directly corresponds to 
this natural quantity represented by a cube. In this cube, we show a series of 
whole natural numbers expressed in the formula Y = 5R³; X = 5R³.

Now, we can calculate the volume of the cube by taking 5 series of whole 
natural numbers. We demonstrate this operation in the formal notation: Y = 
5R³; X = 5R³; Z = 5R³, or 5³R³.
And now, we can clearly see that the cube on the YX plane is represented by a 
flat square. The series of whole natural numbers is also represented by a flat 
square. The flat square on the YX plane is precisely the projection of the cube, 
just as the series of whole natural numbers also has a projection, which is a flat 
square.

Any natural number has three projections represented on the planes: YX - 
frontal plane; XZ - horizontal plane; YZ - lateral plane.
       A projection, in essence, has one more definition - a shadow. Let's provide 
an example. In nature, there are certain bodies with a spherical shape, and the 
projection of a sphere is represented by a circle. In nature, we observe bodies 
with various shapes, and the projections of these bodies are also diverse. Thus, 
the number encompasses all possible geometries, and these geometries are only 
elements of the number. The number possesses the property of the direction of 
number distribution, represented by the XYZ axes. Such a direction of number 
distribution is called a quadrant, or the first quadrant. However, if we want to 
consider all directions of number distribution, we need eight quadrants.

In Fig. 4.15, these quadrants are presented, because in Fig. 4.15, we show 
the coordinate system, or the distribution of whole natural numbers.

The orthogonal coordinate system is also called the Cartesian coordinate 
system. However, René Descartes demonstrated only how to use the coordinate 
system but did not provide a complete and detailed derivation of the coordinate 
system and its connection with the material world and further to numbers. It 
creates  the  impression  that  René  Descartes  borrowed  the  coordinate  system 
from someone, and we assume that it was nobody else than Pierre Fermat.
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        5.     The First Law of Thermodynamics

In various literary sources, the First Law of Thermodynamics is formulated 
as follows. It is the law of conservation and transformation of energy, and it 
constitutes a fundamental law of nature with universal significance. 

It  states:  energy neither  disappears  nor  appears  again;  it  only  transfers 
from one form to another in various physical and chemical processes.

Or put differently, for any isolated system (i.e., a thermodynamic system 
that does not exchange heat, work, or matter with its surroundings), the total 
quantity of energy within that system remains constant.

The law of energy conservation is a fundamental principle that serves as a 
foundation for  understanding the world.  And in this  context,  it  is  extremely 
crucial to understand how the laws of conservation are represented and interact 
with numbers. We have presented the number theory that relies precisely on the 
law of natural quantity conservation.

In  this  connection,  all  the  properties  of  the  law  of  natural  quantity 
conservation, and, as a consequence, the law of energy conservation, are given, 
specified  and  exist  in  the  coordinate  system.  Further,  we  will  explore  the 
processes  that  occur  in  nature,  as  well  as  how  they  are  reflected  in  the 
coordinate system, and how this complies with the laws of conservation.

                  6. Thermodynamic Processes

The  adiabatic  process  is  a  process  that  occurs  in  a  closed  system  with 
external supply or removal of mechanical work, or in other words, it's a process 
of  compressing  or  expanding a  gas  or  a  working substance,  which proceeds 
without heat exchange with the external environment. Let's examine how this 
process is represented in various literary sources.

"If we take the P-V coordinate system, a process defined by the condition P 
= f(V) will be represented in the form of a curve 1-2-3 (Fig. 6.1). The elementary 
work of gas on this diagram will be shown as a hatched area, while the work of 
gas in the process of changing its state from the point 1 to the point 3 will be 
shown as an area limited by the process’ curve 1-2-3, the extreme ordinates and 
the abscissa axis, i. e. by the area 123561. For the process depicted by the curve 
1-4-3, the work will be determined by the area 143561.
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On the basis of what have been mentioned above, we can determine the 
work of gas, provided we know the functional ratio P = f (V)” [Ref. L.3, page 46]
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                                        L=∫
1

2

pⅆ V .                                      (6.1)

"It is convenient to calculate the work of system expansion, defined by the 
equation (6.1), with the help of the P-V diagram. Let's consider the depiction in 
this diagram of the process of transformation of the system’s volume from V1 to 
V2 (Fig. 6.2). The states that the system undergoes during the change in volume 
are located on the process curve between the points 1 and 2. It is evident from 
the equation (4.1) that the work of the system’s expansion is represented on the 
P-V diagram by the area under the process curve (it is shaded in Fig. 6.2)." [Ref. 
L.4, page 24].

It  gives  the  impression  that  the  adiabatic  process  doesn’t  have  any 
contradictions with the law of energy conservation.

We have examined the adiabatic process that proceeds without the supply 
or removal of heat, and now we will consider the processes that proceed with the 
supply or removal of heat.

"The isobaric process is a process that occurs with the supply or removal of 
heat at constant pressure. The work of gas in the isobaric process is determined 
by the following expression:

                           L=P (V2 – V1),   L= R (T2− T1).

The isobaric process on the P-V diagram is represented by a straight line 
parallel to the x-axis. If the initial state of gas is characterized by the point 1 
(Fig. 6. 3), then the process can either proceed towards expansion to the point 2 
or towards compression to the point 3. In the first case, as the volume increases, 
the gas performs the work of expansion, determined by the area of the rectangle 
12451. At the same time, the gas becomes hot,  which means that the heat is 
supplied from the outside both for heating the gas and performing the work of 
expansion. In the second case, the gas contracts, which means that it is subject to 
some compression work from outside, but this work is converted into heat; since 
the gas not only heats up but also cools down, and it is necessary to remove to 
the surrounding environment all the heat, including that taken from the body’s 
internal energy and that, which is equivalent to the compression work." (Ref. 3, 
page 55)

Now, let's consider the next process.
"A process that proceeds at a constant volume is called isochoric. Using the 

equation of state at V = const, we find that
                                             
                                                  P2/P1 = T2/T1.                           (6.5)
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In  the  isochoric  process,  the  pressure  of  gas  is  proportional  to  the  absolute 
temperature. Since dv = 0, the gas doesn’t perform any work in this process, and 
the equation of the first law of thermodynamics looks as follows: dq = du, or 

                                                 q = Сv ( T2 – T1 ).

On the  P-V diagram (Fig.  6.4),  the  isochore  is  shown in  the  form of  a 
straight line parallel to the pressure axis. The upward direction of the process 
from the initial point 1, on the basis of the equation (6.5), signifies an increase in 
internal energy and heating of the gas, while its downward direction signifies the 
cooling of the gas by removing heat to the surrounding environment (Ref. 3, 
page 59). 

We have demonstrated both the isobaric  and isochoric  processes,  and it 
seems that they do not contradict the law of energy conservation. And now let's 
consider one more process, called an isothermal process. The isothermal process 
is a process that proceeds at the constant temperature. 

“From which it follows, that 
                                       P1V1 = P2V2     или        V2/V1=P1/P2,

 i.e.  in  this  process,  the  volumes  of  gas  change  inversely  proportional  to 
pressures (the Law of Boyle and Mariotte). Since the temperature remains 
constant in this process, the internal energy of the gas also remains constant, 
and du = 0. Therefore, the equation of the first law of thermodynamics for 
this process looks like dq = dw, or all the heat supplied is converted into the 
work  of  gas  expansion,  and,  conversely,  all  the  work  spent  on  gas 
compression must be removed to the surrounding environment in the form of 
heat.

The work of gas in this process is determined from the general equation of 
work, provided that

pv = RT = const.».
On the P-V diagram, the process’s curve is represented by the equation pv 

=  const,  i.e.  by  a  rectangular  hyperbola,  for  which  the  coordinate  axes  are 
asymptotes.

Hence, if the point 1 (Fig. 6.6) represents the initial state of gas, then the 
process can proceed towards the point 2, at the same time the expansion of gas 
occurs.  The gas  performs the  work determined by the  area 12451,  and it  is 
necessary to supply heat to this area, which is equivalent to this work. If the 
process proceeds towards the point 3, then the compression of gas occurs, and 
the work spent on it is determined by the area 13651. At the same time, the heat 
equivalent to this work is removed to the surrounding environment.

Since  the  product  of  PV increases  with  an increase  in  temperature,  the 
farther an isotherm is from the start of coordinates, the higher the temperature 
it represents”. [Ref. L.3, page 56.]
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We  have  demonstrated  one  more  process  in  a  way  it  is  described 
approximately similar in various literary sources. 

However, it may seem that there are no contradictions to the first law of 
thermodynamics. But now we can compare different processes and see how the 
law of energy conservation is observed. It is convenient to show this comparison 
in P-V coordinates, using the isothermal process as a base. 

In  the  comparison  demonstrated  in  Fig.  6.7,  we  see  the  isothermal 
expansion  process  1-2,  and  accordingly,  all  the  work  we  can  obtain  is 
represented by the area under the process curve 12341.

But now let's ask ourselves: is the isothermal process simple or complex? 
Our  answer  is:  it  is  a  complex  process.  Then  another  question  arises:  is  it 
possible to divide the isothermal process into simpler processes? Our answer is: 
yes, it is possible.

 In  its  physical  essence,  the  isotherm is  a  gas  expansion process,  so  the 
isotherm includes the adiabatic gas expansion process. But this process proceeds 
with heat supply, that’s why the similar amount of heat supplied between the 
points 1-2 will be supplied to the isobaric process 1-5, and then we’ll perform the 
adiabatic expansion process up to the point 2. The temperature at the point 2 
will  be  equal  to  the  temperature  of  the  isotherm.  The  work  area  in  these 
processes will be equal to 152341, but this area is greater than the area under 
the isotherm 12341.

But here a new question arises: is it possible to receive even more work? 
The answer is: yes, it is possible, but how? To achieve this, we supply similar 
amounts of heat to the isotherm and to the point 1 through the isochoric process, 
i.e., 1-7, then the heat is expanded adiabatically up to the point 2. At this point, 
the temperature of gas will be equal to the isotherm’s temperature. The work 
area in such processes will be equal to 72347, but this area is greater than the 
isotherm’s area and greater than in cases where heat is supplied at constant 
pressure (isobaric).

It  becomes  evident  that  there  are  contradictions  to  the  law  of  energy 
conservation, because if we obtain all the work in the isothermal process, and 
this work is represented by a certain area, then in any other process, where the 
same amount of heat is supplied, the areas representing work must be equal to 
the  area  under  the  isotherm.  Otherwise,  the  law  of  energy  conservation  is 
directly violated.

Let's  mention  specifically  that  the  processes,  which  take  place  in  the 
material  world  (Fig.  6.7),  do  not  contradict  the  law of  energy  conservation. 



37

Therefore,  these  contradictions  result  from  the  assertion  that  the  work 
performed is equal to the area under the process. And here again, the following 
question  arises:  where  did  this  assertion  appear?  Various  literary  sources 
explain this question in the following way (we highlight it briefly).

In 1824, Sadi Carnot, in his work "Reflections on the Motive Power of Fire 
and on Machines  Capable  of  Developing this  Power” introduced the  Carnot 
cycle (Fig. 6.8). It is presented as a circular process 1-2-3-4-1 and consists of 
adiabats  2-3  and 4-1,  followed by isotherms 1-2 and 3-4.  The direct  cycle  is 
completed  along  1-2-3-4-1.

The process 1-2 (isothermal expansion): 
The gas performs work determined by the area 12681 and is equal to: 
L1-2 = mRT1lnV2 / V1

Heat equivalent to this work is supplied from the heater: 
Q1-2= Q1 = mRT1lnV2/V1

The process 2-3 (adiabatic expansion): 
The gas performs work determined by the area 23562 and is equal to:
L2-3 = mR(T1- T2)/(k – 1).   Q2-3 = 0.
The temperature of gas decreases to Т2.

The process 3-4 (isothermal compression):
The work spent on gas compression is determined by the area 43574 and is 
equal to:  
L3-4 = mRT2lnV4/V3 = – mRT2lnV3/V4.
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The heat equivalent to this work is removed to the cooler at the temperature Т2.  
Q3-4 = Q2 = L3-4 = mRT2 ln V3/V4

The  process  4-1  (adiabatic  compression).  The  work  spent  on  gas 
compression is determined by the area 14781, and is equal to:

L4-1= mR(T2 – T1)/(k – 1) = – mR(T1 – T2)/(k – 1),   Q4-1 = 0

The gas is heated to the temperature Т1.
The results of the cycle are as follows. The cycle’s useful work is determined 

by the sum of works performed by the gas during the entire cycle. Summing up 
the areas that  represent the work of  gas in individual  processes,  taking into 
account the signs of the work, we find: Area 12341 = Area 12681 + Area 23562 – 
Area 43574 – Area 14781." [Ref. L.3, page 67].

"The aforementioned information is  explained as  follows (Fig.  6.9).  Any 
reversible cycle of arbitrary configuration can be imagined as a combination of 
elementary Carnot cycles, consisting of two adiabatic curves and two isotherms. 
In each of these cycles, the supply and removal of heat are performed along the 
isotherms. The sum total of elementary Carnot cycles determines the area of any 
cycle, and so on." [Ref. L.4, pages 55-56.]

We can go on quoting various literary sources, but none of them contradict 
the law of energy conservation. And contradictions may seem to be absent. And 
here we stipulate the very possibility of performing various processes, since if 
any process can occur in the material world, it does not contradict the laws of 
energy  conservation,  i.e.  if  it  is  natural  and  proceeds  without  human 
intervention.  However,  another  question  arises  here:  where  do  such 
contradictions with the laws of energy conservation come from? And now let’s 
notice that the work is determined by the area under the process. In various 
literary sources,  this  statement does not have a concrete scientific  basis  and, 
apparently, constitutes an axiom. In thermodynamics, two axioms are used:

The first axiom: Work in the adiabatic process lies beneath the process. 
The second axiom: Work in the isothermal process lies beneath the process.
Therefore, to understand the gnosiology (epistemology) of these questions, 

we will  return to a more detailed consideration of thermodynamic processes, 
starting with the adiabatic process.
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              7.  The Adiabatic Process

Let's pay attention to Fig. 7.1. The process of compression or expansion has 
been carried  out  experimentally,  measured in  detail  and represented in  P-V 
coordinates.  But now the following question arises:  what is  a  flat  coordinate 
system, and how is it connected with the properties of the material world? From 
the perspective we presented in the number theory, a flat coordinate system is a 
projection, or, another term, a shadow. And now one more question crops up: is 
it possible, through the solution of the problem at the shadow level, to obtain a 
complete and exhaustive idea of the object under study? And the next question: 
can we solve the problem using P-V parameters without a direct connection with 
the weight and, consequently, with the mass of gas? The answer is obvious: no! 
That’s why let's provide a more complete notion of the adiabatic process in Fig. 
7.1. In this figure, the adiabatic process is represented by the curve 1-2 in the P-
V-g coordinate system, where: P – the pressure of gas, V – the volume of gas, g – 
the  specific  weight  or  mass  of  gas.  The  product  E  =  P×V×g  represents  an 
element of internal energy. The product V×g represents the weight or mass of 
gas, which remains constant in the adiabatic process.

We show any arbitrary point B on the curve 1-2, but since the adiabatic 
process has three projections,  the point B also has three projections.  All  the 
projections share the property of unity, because they represent or reflect one 
and the same state of gas or in other words, characterize the state of the natural 
quantity represented by gas. Now let's look at the projection of the adiabatic 
process on the V-g plane. On this plane, the projection of the adiabatic process is 
represented by a curve that characterizes the value of the gas's weight or mass. 
The Point B has a projection represented by the Point B1, which characterizes 
the state of gas, and the area B1-C1-0-C3-B1 characterizes the weight, or mass 
of the gas. 

Any point of the weight or mass of gas on this curve is represented by the 
product V×g = const. But now if we ask anyone: how many points are there on 
this curve, we will get the answer: an infinite set of points. However, such an 
answer is  false!  But why? We show the state  of  gas under the piston in the 
Figure on the right, from which it follows that we have only one mass of gas, and 
only one point on the curve corresponds specifically to this mass of gas."
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Now we have to provide a definition of the curve: a given curve is a possible 
location of only one point.
        Let's look at the P-V plane, where we see the curve of the adiabatic process 
and the projection of Point B on the P-V plane - Point B2. The location of this 
point is described by the product P×V, which represents all the mechanical work 
existing in a closed system; it is represented by the area B2-C2-0-C1-B2.

But now the following question arises: where is the area under the process? 
There is no such area in P-V coordinates at all. And again, we wonder why it is 
so. The answer is simple: only a single point corresponds to a given state of gas, 
to which the indicated area corresponds, because we cannot claim that the gas 
can exist in two or more states simultaneously. And now let’s look at the area 
under the process; this area is imaginary; it is not connected directly with the 
mechanical  work  in  the  adiabatic  process.  Carnot's  axioms  are  based  on  a 
purely  geometric  perception of  the  question that  directly  violates  the  law of 
correlation, and as a result, violates the law of energy conservation. And here 
one more question arises: what represents the work of gas? At the formal level it 
is A= P×V; this ratio is called Boyle - Mariotte's Law; it was found empirically. 
But neither Boyle nor Mariotte showed how the work of gas is represented in P-
V coordinates. An attempt to fill the gap was undertaken by Carnot. Let's show 
the way how the formula A= P×V is defined.

To do this, let's refer to Fig. 7.1, where we show a cylinder with a piston on 
the right, with a load, the gas pressure balances the piston with the load. And 
now let's see how this position of the load is expressed in numbers. Pay attention 
to Fig. 7.2, where we show a certain natural real number that characterizes a 
natural quantity and its location in the coordinate system. We will represent our 
load on the piston as  a  natural  quantity:  F = 4  R3    on the X-axis.  We will 
represent the load’s height as h = 5 R3   on the Y-axis. The load’s potential work 
is equal to A= F×h, which represents the number’s area.  Now let's express the 
potential work of gas in numbers. The height of gas under the piston is  Y=h = 
5R3. But the height has the dimension R3, which is the dimension of elementary 
volume, and this dimension has an area R2, which accounts for the specific gas 
pressure P. The specific potential work of gas is represented by  А= 5R3 × 1P, 
А= 5R3×FP or in formal notation A= P × V.  
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Let's look at Fig. 7.1, where we show a cylinder with a piston on the right, 
with a load placed on it. The gas pressure balances the piston with the load. Now 
let's see how this position of the load is represented in numbers (Fig. 7.2). In this 
figure,  we  show a  certain  natural  real  number  that  characterizes  a  natural 
quantity and its location in the coordinate system. We will present our load on 
the piston as a natural quantity: F = 4 R3 on the X-axis. The height of the load is 
h = 5 R3 on the Y-axis. The potential work of the load is equal to A = F×h, which 
represents the number’s area. Now let's express the potential work of gas in 
numbers. The height of gas under the piston is Y=h = 5R3. But the height has the 
dimension R3, however it is the dimension of elementary volume, and the area of 
this dimension is  R2, to which the specific pressure of gas P is applicable. The 
specific potential work of gas is represented by А= 5R3 × 1P.  А= 5R3×FP, or in 
formal notation, A = P × V, where P is  represented on the Y-axis,  and V is 
represented on the X-axis. The work in the coordinate system is given by the 
number’s  area  A= YR3×XR3,  or  in physical  quantities,  A= Pf/R2  × VR3.  The 
potential work of the load and gas is equal, and in the flat coordinate system, 
they are represented by the same area. When considering the representation of 
work  in  numbers  for  both  the  lifted  load  and  gas,  we  once  again  see  the 
inconsistency  of  Carnot's  axioms  with  the  requirements  of  thermodynamics, 
physics and mathematics.

The next process we will consider is the isobaric process. The work in the 
isobaric  process  lies  beneath the process  and is  shown in the flat  coordinate 
system in Fig. 6.3. Such a representation of work in the isobaric process does not 
contradict  the  law  of  correlation,  and  consequently,  the  law  of  energy 
conservation.

The next process we will examine is the isochoric process.

                       8. The Isochoric Process

The isochoric process proceeds in a closed system with a constant volume. 
The interaction with the mass of gas is determined in the same way as in the 
adiabatic process. We illustrate the isochoric process in Fig. 8.1.
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The supply of heat to the gas from Point 2 to Point 4 at the constant volume 
results in an increase in pressure and, consequently,  the amount of potential 
work in the system, represented by the area 2-4-6-Pc-2, increases proportionally. 
In cases where the heat is removed in the isochoric process from Point 4 to Point 
3, the work lost by the system is represented by the area 4-6-7-3-4.

If the isochoric process is performed from Point 2 to Point 4, the total work 
in the system is represented by the area 4-6-0-5-4, which is represented not only 
by the work in the isochoric process but also by also the work in some other 
process, such as the adiabatic process.

The next process we will consider is the isothermal process.

                                9. The Isothermal Process

The isothermal process proceeds in a closed system, with the heat supplied 
during the expansion process in such a way that the gas temperature remains 
constant. It is obvious that the isothermal process is a complex one, but the key 
point here is that, all the heat in this process is converted into mechanical work, 
and all the mechanical work is given to an external consumer. This means the 
complete compliance with the law of energy conservation. 

The isothermal process is shown in Fig. 9.1 by the curve 2-3. However, it is 
clear now that we will not be able to perform the isothermal process, if the gas is 
not  compressed  beforehand.  That’s  why,  we  show  the  adiabatic  curve  of 
compression 1-2, but in this way, we consider the processes in the pressure range 
between Pa and Pc. Further, we can also consider the processes between P0 and 
Pc, but in both cases, the processes are typical.

And now, another question arises: how much work can we obtain in the 
isothermal process? It is not possible to see this on the graph of the isothermal 
process,  because some portion of heat is  supplied to the process,  while some 
portion of mechanical work is removed.

We’ll be able to see the entire work in the isothermal process, if we divide it 
into  simpler  processes,  namely:  the  isobaric  heat  supply  followed  by  the 
adiabatic expansion process, where in the isobaric process, we’ll  supply heat, 
whose amount is equal to the amount of heat supplied in the isothermal process.
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Such an action leads to the state of gas corresponding to Point 4. It's not 
difficult  to  see  that  while  performing the  isobaric  supply  of  heat,  the  initial 
temperature at Point 2 is represented by a certain temperature (T). After the 
supply of heat, the temperature at Point 4 is represented by (T+Δt); then from 
Point 4, we perform the adiabatic process of gas expansion and appear at Point 
3. By performing this adiabatic process from Point 4 to Point 3, we’ll reduce the 
temperature from (T+Δt) to (T). In other words, the gas at Point 2 and Point 3 
has the same temperature (T), which indicates that the same amount of work is 
delivered  to  the  external  consumer  during  both  the  isothermal  and  isobaric 
processes, followed by the adiabatic expansion process.

We can perform a reverse process as well, i. e. we can perform the adiabatic 
compression process starting from Point 3 to reach Point 4 and receive the gas 
temperature (T+Δt). Then, we perform the isobaric removal of heat equal to the 
value of temperature Δt and get to Point 2, whose temperature is (T). This once 
again points to the equality of the works done, or in other words, one and the 
same amount of heat produces one and the same amount of useful work. This 
work  is  represented  by  the  area  under  the  isobaric  curve  2-4-7-6-2  and 
constitutes all the potential useful work, which can be received by the external 
consumer. The receipt of work in excess of the indicated one directly contradicts 
the law of energy conservation.

This work has a concrete physical meaning. The system’s state in Point 2 is 
demonstrated in the diagram on the right (position 1). The gas under the piston 
is at the end of compression, where the pressure is equal to (Рс). During the 
isobaric supply of heat, the working body increases its volume at the constant 
pressure (Рс), which leads to the lifting of a load corresponding to position (Рс4). 
That is  precisely what represents  the change in potential,  or  in the system’s 
internal energy.

At Point 4,  the system performs the total work, which includes both the 
expended work and useful work. By conducting the adiabatic expansion process 
4-3, the system delivers to the external consumer its total work, represented by 
the area РА-Рс-2-4-7-6-РА. The expended work is reversible, and so the useful 
work is the difference between the total work and expended work. The equality 
of the initial and final parameters of gas can serve as a criterion for the complete 
fulfillment of the process. For example, we can perform the isothermal process 
on  condition  that  the  adiabatic  process  1-2  is  available,  whereupon  the 
isothermal process 2-3 is performed. The Points 1 and 3 lie on the isobaric curve 
Pa. Point 2 lies on the isobaric curve Pc.    

For the isobaric heat supply, Point 2 serves as a common point and lies on 
Рс. We perform the adiabatic process from Point 4 and arrive to Point 3, which 
lies on РА. Therefore, the initial and final parameters of gas are equal. The gas 
temperature at Point 2 is the same for both the isothermal and isobaric heat 
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supply at Point 3. We have compared two processes of heat supply, and now let's 
consider a third one and compare it with the isothermal heat supply process.

       10. Comparison of Isochoric and Isothermal Processes

The  isochoric  process  of  heat  supply  is  illustrated  in  Fig.  9.1.  It  is 
represented by Points 2-5, on condition that the amount of heat supplied in the 
isochoric  and  the  isothermal  processes  is  similar.  Next,  from  Point  5  we’ll 
perform the adiabatic process of gas expansion 5-4-3, paying attention to the fact 
that the initial and final parameters of gas are equal, i. e. the beginning of the 
isochoric process is located at Point 2 and is common to both the isothermal and 
the isobaric processes. The adiabatic process starts from Point 5 and ends at 
Point 3, with the isotherm ending also at Point 5.

Now the following question arises: how much useful work can we obtain? 
The amount of work in the isochoric process is known and is represented by the 
area of total work 6-РА-Pz-5-6, which includes the area of expended work 6-РА-
Рс-2-6 and the difference between the total work and expended work. The useful 
work is represented by the area 2-Рс-Pz-5-2. But now another question arises: 
what represents the work expended during the implementation of the adiabatic 
process 5-4-3? To answer the question, let’s consider how this process proceeds 
within a  cylinder  under a  piston.  Fig.  9.1  (on the  right,  position 1)  shows a 
cylinder  with  a  piston,  whose  position  corresponds  to  the  completion  of  gas 
compression in the cylinder, where the gas pressure is Pc and the gas volume is 
Vc. 

We consider the isochoric heat supply process as a rapid one, leading to a 
rapid increase in pressure under the piston. However, since there is a load on the 
piston possessing a significant inertia, the piston with the load will begin to rise 
slowly  upwards.  And  as  the  pressure  decreases  down  to  Pc,  the  state  of 
equilibrium will be reached and the piston will stop. This position corresponds 
to Point 4 in Fig. 9.1.

The physical meaning of the process 5-4 is determined by the fact that it 
involves the lifting of a load. It can be shown that the potential work in Point 4 is 
represented by the area 4-7-6-2-4. This work is equal to the potential work in the 
isothermal  and  isobaric  heat  supply  processes.  The  following  adiabatic 
expansion from Point 4 to Point 3 shows that the external consumer receives the 
same amount of work, regardless of the form of heat supply used, which fully 
satisfies the law of energy conservation.

Let’s  notice  how the  quantitative  assessment  of  work is  conducted.  Any 
quantitative  assessment  is  relative,  meaning  it  shows  how  many  times  one 
quantity is greater or smaller than the other. But now we need to take a certain 
amount of work as a unit. It is convenient to take the expended work as a unit, 
and the ratio of total work to expended work shows how many times the total 
work is greater than the expended work.
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The expended work is characterized by the degree of compression, which 
indicates  how many times  we  have  compressed  the  gas,  while  the  degree  of 
expansion indicates how many times we have expanded the gas. In the  adiabatic 
process, the degrees of compression and expansion are equal, which determines 
the  amount  of  work  expended  on  gas  compression  exactly  as  equal  to  that 
obtained in the process of gas expansion. And it is precisely this condition that 
satisfies the law of energy conservation for an adiabatic curve.

Now you can see two forms of measuring work: in the isochoric process, the 
total work is represented as A = Pz × V5, while in the isobaric process, the total  
work is represented as A = Рс × V4. The complete equation looks as follows:

                                  Pz × V5 = Pc × V4                                   (8.1)

This type of equation has long been known in thermodynamics and represents 
the law of conservation of gas internal energy.

                          11. The Combined Method of Heat Supply

Let's consider another method of heat supply - a combined method, which 
includes both the isochoric and the isobaric supply of heat, as shown in Fig. 9.1.  
Heat is supplied along both the isochoric curve 2-10 and the isobaric curve 10-9. 
Then, the process of adiabatic expansion 9-3 takes place, but this adiabatic curve 
has a section 9-4, where Point 4 lies on the isobaric curve Рс.

A given example of isochoric and isobaric heat supply shows that it is a 
change in the internal energy of gas, which should be measured by the height of 
a  lifted load.  However,  the  amounts  of  heat  supplied to  the  gas  in  both the 
isochoric process 2-10 and the isobaric process 10-9 are equal to the amount of 
heat supplied in the isothermal or isobaric processes. Therefore, the combined 
method of heat supply results in the same height of a lifted load.

Then the adiabatic process 4-3 comes into play – or the delivery of total 
work to the external consumer, which is the same for all forms of heat supply.

The criterion for delivering the total work to the external consumer is the 
equality of the degree of compression and the degree of expansion, where the 
start of expansion degree in the cycle lies on Рс.

When considering the processes of heat supply, we can see that any heat 
supply processes that take place above Рс are directly connected with the change 
in the potential energy of gas, which is expressed as the height of a lifted load. 
And as a result, all the processes of heat supply that proceed above Рс must be 
brought to the isobar Рс, because the start of delivering the total work to the 
external consumer lies on Рс; in our example, it is Point 4.
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                         12. Cycles of Heat Engines 

The aggregate of thermodynamic processes that yield a positive outcome is 
called a cycle. Let's examine a cycle in a heat engine with the isothermal heat 
supply, as shown in Fig. 6.8. This cycle includes the following stages:

1. Isothermal process of heat supply (1-2)
2. Adiabatic process of gas expansion (2-3)
3. Isothermal process of gas compression (3-4)
4. Adiabatic process of gas compression (4-1)

Such a cycle is known as the Carnot cycle. It is a reversible cycle, with the 
area of useful work in this cycle being equal to zero.

In terms of its processes, the Carnot cycle itself does not contradict the law 
of energy conservation. Further, on the basis of Carnot's axioms, the following 
assertion is deduced: the useful work in any cycle is equal to its area. In fact, this 
assertion is absurd. 

 Now, let's consider the question of a heat engine’s efficiency factor (η) – 
“for a thermal efficiency factor of the Carnot cycle”:

                                       ηт = ( Т1 - Т2) / Т1                    (3.32).

As can be seen from (3.32), the value of  ηт depends on  Т1 and  Т2. At the 
same time,  ηт is greater when the difference between  Т1 and  Т2 is larger. The 
thermal efficiency factor (η) in the Carnot cycle becomes equal to a unit in two 
practically unattainable cases: either when Т1=∞ or when Т2=0. (Ref. 4, page 54). 
Such  an  assessment  of  the  heat  engine’s  thermal  efficiency  factor  is  rather 
abstract and does not facilitate the comprehension of the very nature of the heat 
engine.

Now,  we  will  be  able  to  demonstrate  why  the  efficiency  factor  in  the 
Nikolaus  August  Otto  air  cycle  is  significantly  higher  than  in  the  really 
measured cycle.

The Otto cycle illustrated in Fig. 12.1 encompasses the following processes:
1. Gas compression process (1-2)
2. Isochoric process of heat supply (2-3)
3. Gas expansion process (3-5)
4. Process that conditionally conclude the removal of heat (5-1)

According  to  Carnot's  axioms,  the  useful  work  in  the  Otto  cycle  is 
represented by the area of the cycle 1-2-3-5-1, which is obtained as the difference 
between the area under the process 3-5 and the area under the process 1-2. 
Consequently, the area 2-3-4-2, as part of the useful work in the cycle, is located 
above Pc (critical pressure). However, we cannot in principal obtain the useful 
work  above  Pc,  because  it  is  directly  at  variance  with  the  law  of  energy 
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conservation, not to mention the fact that it contradicts even the very definition 
of useful work.

Since  the  useful  work  is  the  difference  between  the  total  work  and  the 
expended work, we will gradually examine all the processes involved in the Otto 
cycle, relying on the law of correlation, and compare the work performed in the 
processes with the height of a lifted load.

The  process  1-2  (gas  compression)  is  the  first  process  that  needs  to  be 
performed. We will represent it as a gradual increase in the load on the piston. 
As the load increases, the compression of gas also increases. And at a certain 
value of the load on the piston, the gas pressure, which balances the weight of 
the load, will have the value Pc (critical pressure). The work stored in the gas 
will be represented by the area 8-2-Pc-Pa-8, and it is the total work in the gas 
that exists in the closed system above Pa. 

The next process 2-3, the isochoric heat supply, is represented by the area of 
work 2-3-Pz-Pa-2.  The  total  or  all  the  work in  the  closed  system after  heat 
supply above Pa is represented by the area 8-3-Pz-Pa-8 and described by the 
equation Ар = V2 × ( Pz – Pa ). We consider the isochoric heat supply process as 
a rapid process that involves a rapid increase in pressure under the piston, and 
as a result, the piston with the load moves upwards, and this motion finishes 
when the pressure under the piston reaches the value Pc. In Fig. 12.1, we show 
the piston's position in Position 2.

The process of increasing the gas volume under the piston is shown by the 
adiabatic curve 3-4. The total work in the closed system is represented by the 
equation Ар = (Рс – Pa) ×V4. The process 3-4 is a change in the specific energy 
of gas, which does not result in the delivery of useful work. It is characterized as 
the coefficient of preliminary expansion  ρ= V4/V2, indicating how many times 
the total work increased and became greater than the expended work, because 
the total work in this process is conservable and represented by the equation:

                                     (Pc-Pa) × V4 = V2 × (Pz-Pa)



53



54

From which it  follows that  the  supply  of  heat  above Pc can proceed in 
various processes, but they do not affect the amount of work obtained, because 
the crucial factor here is the amount of supplied heat, which is determined by 
the value ρ= V4 /V2.

The delivery of total work to the external consumer begins exactly within 
the  cycle  and  is  represented  by  Point  4,  which  lies  on  Pc,  followed  by  the 
subsequent movement of the piston and, as a result, a decrease in the load on the 
piston.  The process  of  delivering the  total  work to  the  external  consumer is 
represented by the adiabatic curve 4-6, or 4-5 in the Otto cycle. The Otto cycle 
belongs to the category of incomplete cycles. And now we want to understand 
what a complete cycle is. 

The complete cycle is a cycle, in which the delivery of total work has a limit 
determined  by  natural  capacities.  It  includes  the  gas  compression  process, 
represented by the compression rate  εc=V1/V2. The process of heat supply in 
any  form  is  characterized  by  ρ=  V4  /V2. The  gas  expansion  process  is 
determined by the expansion rate εр=V6/V4. In this case,  the complete cycle 
proceeds above Pa (atmospheric pressure), and its characteristic is εc= εр, which 
means  that  the  gas  volume  V4  obtained  after  the  supply  of  heat  must  be 
expanded εc times, making it possible to reach a pressure equal to Pa. The entire 
process of gas expansion in the complete cycle, including the supply of heat, is εp 
× ρ times. For the sake of illustration, let's show the complete cycle in figures, 
with the rate of compression εc= εр= 10, for the supply of heat ρ= V4 /V2 = 2, 
and the total expansion rate εр× ρ = 20.

On  these  conditions,  all  the  maximum  possible  total  work  that  can  be 
obtained between Pa and Pc is delivered to the external consumer.

The next stage in the cycle’s implementation is to bring the system back to 
its initial state. This can be accomplished in two ways. The first way involves the 
proceeding of the cycle in a closed system, so after reaching the pressure Pa, the 
gas goes to the heat exchanger, where it cools down and then compresses to V1. 
Then the cycle repeats itself. The second way involves the discharge of the used 
gas into the atmosphere and the intake of fresh gas from the atmosphere with 
initial parameters, which allows the cycle to repeat itself. To accomplish this, the 
compression  process  must  be  performed.  The  work  expended  on  gas 
compression is recoverable and subtracted from the total work, whereupon the 
external consumer receives the useful work.

Now,  from this  position,  let's  look  at  the  Otto  cycle.  In  the  formula  of 
thermal efficiency factor for the Otto cycle, the equality εc = εp is accepted, but 
it  applies  to  the  geometric  movement  of  the  piston  during  the  processes  of 
compression and adiabatic expansion 1-2 and 2-1. The rate of expansion, exactly 
in this cycle and then in any other cycle, including the Otto cycle, is determined 
by the  ratio  of  total  expansion in  the  cycle,  εp ×  ρ  =  εp.  Now showing this 
example in the numerical form, we obtain εp × 2 = 10 and εр= 5, which clearly 
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points to a flaw in the determination of the thermal efficiency factor in the Otto 
cycle.  That is the result of an axiomatic approach to understanding the work of 
a heat engine, leading to an absurd result, and as a consequence, the theoretical  
thermal efficiency factor is significantly higher than the real one, because the 
theoretical thermal efficiency factor absolutely does not take into account the 
real losses of work in the Otto cycle, which are demonstrated.

The process of gas expansion with the delivery of total work to the external 
consumer begins at Point V4, which lies on Pc, and ends at Point 5. However,  
since the expansion process is incomplete (εp = 5), the gas pressure at Point 5 
significantly exceeds Pa and is called the exhaust pressure. As a result, a portion 
of the total work, including both the useful and expended work, is lost.  This 
portion is represented by the area  1-5-Рв-Ра-1. The subsequent process of gas 
compression proceeds at the expense of the reverse work, which is incomplete, 
and this deficiency is compensated from the useful work.

Such  losses  are  not  necessary;  they  are  the  result  of  engine  design 
imperfections,  meaning  that  the  design  does  not  meet  thermodynamic 
requirements.

Now,  let's  consider  whether  the  useful  work  is  available  above  Pc.  By 
definition,  the  useful  work is  the  difference  between the  total  work and the 
expended work. In real internal combustion engines (IC engines) with the Otto 
cycle, the total work is delivered to the flywheel. Then, the flywheel expends a 
portion of the total work on gas compression, leaving the useful work on the 
flywheel. However, it is principally impossible to receive the useful work above 
Pc. 

If the external consumer receives the useful work above Pc, then later the 
external  consumer  should  also  have  to  receive  the  total  work  during  the 
expansion process 4-6. In other words, the external consumer will receive both 
the total work and the useful work above Pc, which is impossible in principle, 
because such a receipt of the useful work directly contradicts the law of energy 
conservation. To reiterate, the total work is all the work that can be delivered to 
the external consumer.

Let's  illustrate  the  availability  or  absence  of  useful  work above  Pc  in  a 
somewhat  different  way.  We  can  supply  heat  to  the  gas  in  a  closed  system 
through the isochoric process, where the area of total work is represented as 8-3-
Pz-Pa-8.

Now, let's supply a similar amount of heat to the gas by the isobaric process, 
where the total work is represented by the area 7-4-Pc-Pa-7. According to the 
law of energy conservation, a similar amount of supplied heat produces a similar 
amount of useful work.

The useful work in the isochoric process is represented by the area 2-3-Pz-
Pc-2.

The useful work in the isobaric process is represented by the area 7-4-2-8-7. 
These areas are equal, and the areas of total work are also equal.
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The location of these areas clearly shows that the availability of useful work 
above Pc is impossible, since such an area of useful work contradicts the law of 
energy conservation. Such contradictions with the law of energy conservation 
exist as a result of Carnot's axioms, which create a distorted understanding of 
the nature of heat engines.
      And now we’ll consider the next cycle of heat engine. It is a cycle with the  
isobaric  heat  supply.  For  the  first  time,  an  internal  combustion  engine  was 
patented by Rudolf Diesel.  We’ll illustrate it in Fig. 12.2. It encompasses the 
following processes: the process of gas compression 1-2, the isobaric process of 
heat supply 2-4, the process of expansion or delivery of the total work to the 
external consumer 4-5 and the conditionally closing process 5-1. 
    It is clear that the Diesel cycle is incomplete, and in the same way as the Otto 
cycle, has non-productive losses of total work at the moment of exhaust, which 
clearly highlights the fact that the design of internal combustion engines is at 
variance with the requirements of thermodynamics. 
The next cycle we are going to consider is a cycle with the combined heat supply, 
which includes the following processes: gas compression, the supply of a portion 
of heat by the isochoric process and then later the supply of heat by the isobaric 
process and, finally, the delivery of total work to the external consumer. 
This cycle is known as the Trinckler-Sabate cycle. It is also incomplete, with no 
useful  work  above  Pc.  Moreover,  as  in  the  Diesel  cycle,  there  are  big 
unproductive  losses  at  the  moment  of  total  work exhaust  there.  And what’s 
more, the cycle under discussion has heat losses as all other kinds of internal 
combustion engines. The ecological effects of exhaust gases are poor and leave 
much to be desired. 
Let’s examine one more cycle, which is known as the Carnot cycle (Fig. 12.2). 
The classical Carnot cycle consists of two isotherms and two adiabates, but the 
presence or absence of adiabates in the cycle in no way changes the physical or 
quantitative meaning of the heat engine cycle.
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Since the isothermal process is essentially the adiabatic process with heat 
supply, where the temperature remains constant, we consider a heat engine cycle 
consisting of two isotherms.

Let's supply heat through the isotherm 2-4, but the isotherm is a complex 
process. And for a clearer understanding of the nature of heat engines, we’ll 
break down the isotherm into simpler processes,  i.e.  the isobaric heat supply 
process 2-3 and the adiabatic expansion process 3-4. It becomes evident that in 
the isothermal process 2-4, we deliver all the work to the external consumer. 
However,  in  the  course  of  the  isobaric  heat  supply  process  2-3,  followed by 
adiabatic expansion 3-4, we also deliver all the work to the external consumer. 
As an element of the cycle, the paths 2-4 and 2-3-4 are energetically equivalent.

Now, from Point 4, we can perform the isothermal process 4-2, creating a 
reversible cycle that includes two isotherms. And here the following question 
arises: what determines the useful work in such a cycle? We cannot represent all 
the useful work in the isothermal process, because in Point 2, the area 2-Pc-Pa-5-
2 is represented, which shows the amount of work expended on gas compression.

After the isothermal process is performed in Point 4, the gas has already 
delivered  all  the  possible  work  and  retains  some  residual  work  represented 
under the isobar Pa. In any intermediate point between Point 2 and Point 4, the 
state of gas will have only a portion of the total work, which results from the 
combined heat supply and the delivery of total work to the external consumer. 
However,  since  the  same  amount  of  heat  produces  the  same  amount  of 
mechanical work, we can factorize the isotherm into an isobar, followed by the 
delivery of total work to the external consumer.

The total work lies under the isobar Pc-3 and is represented by the area Pc-
3-6-Pa-Pc. This is the total work for both the cycle with isothermal heat supply 
and  the  cycle  with  isobaric  heat  supply.  And now let's  perform the  reverse 
isothermal process 4-2. In this process, the external consumer returns the total 
work to the system, leaving the consumer with 0 work. It becomes clear that if 
we perform the classical Carnot cycle, the amount of useful work is also zero. 
The  following  question  then  arises:  in  what  way  can  the  external  consumer 
obtain the useful work?

Let's illustrate the cycle with heat supply through the isotherm. From Point 
2,  we  perform  the  isothermal  process  2-4.  At  the  same  time,  the  external 
consumer will receive the entire work, whose area is equal to Pc-3-6-Pa-Pc. Then 
to continue the cycle’s realization, we remove heat by the isobaric process 4-1, 
expending some work on gas compression.

Next, we perform gas compression by the adiabatic process 1-2, subtracting 
the work spent on compression from the total work delivered to the external 
consumer. The external consumer retains the useful work, represented by the 
area 2-3-6-5-2.

Now, let's show an equivalent cycle with isobaric heat supply. From Point 1, 
we perform the adiabatic gas compression process 1-2, followed by the isobaric 
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heat supply process 2-3, followed by the adiabatic gas expansion process, with 
the delivery of total work to the external consumer, 3-4. After that, we remove 
heat  by  the  isobaric  process  4-1,  expending some work on gas  compression. 
Finally, we compress the gas by the adiabatic process 1-2, subtracting the work 
spent on compression from the total work delivered to the external consumer. 
The external consumer is left with the useful work, represented by the area 2-3-
6-5-2. These areas are identical, and the amounts of useful work in these cycles 
are also equal. The isotherm acts as a diagonal of the entire cycle.

Now, let's consider the question of thermal efficiency factor (TEF) for the 
heat engine. It might seem that we can use the Carnot formula, but it provides a 
subjective  result,  because  heat  and  temperature  are  only  conditions  for  the 
potential realization of a heat engine. But what does a useful action (thermal 
efficiency) mean? For us, a useful action is a mechanical work, and it is essential 
to understand how much useful work we can obtain and what the maximum 
possible work is. Clearly, work is directly connected with such a gas parameter 
as pressure. The heat engine makes use exactly of pressure differences, and its 
thermal efficiency can be evaluated as follows:

                                          

Where:
 Pc -  the final pressure of compression
 Pk -  the final pressure of the gas expansion process

Evidently, the thermal efficiency factor (η) does not depend on the thermal 
capacity of gas. It becomes clear that it is necessary to increase a compression 
rate for the purpose of enhancing the efficiency of internal combustion engines 
(IC  engines).  The  compression  rate  also  has  another  physical  meaning:  it 
represents the heat engine’s specific power capacity.

We  have  presented  all  the  known  forms  of  heat  supply  and  possible 
thermodynamic  cycles.  It  becomes  evident  now  that  an  engine’s  thermal 
efficiency  is  determined  by  the  realization  of  exactly  a  complete  cycle.  A 
complete cycle, in turn, can be performed with isochoric heat supply, combined 
isochoric-isobaric heat supply, isobaric heat supply, isothermal heat supply and 
other forms of heat supply. Given such a diversity of heat supply methods, it is 
quite  appropriate  to  ask  here:  and  which  cycle  is  the  best  for  internal 
combustion  engines  (IC  engines)?  To  have  a  clear  understanding  of  this 
question, let's explore a very important fact, which we illustrate in Fig. 12.3.

In  the  T-S  (temperature-entropy)  diagram,  we  show  a  complete  cycle 
consisting of the compression process 1-2, the isochoric heat supply process 2-3, 
the complete expansion process 3-4, and the closing isobaric process 4-1. This 
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cycle is known as the Atkinson cycle. For gasoline IC engines, the compression 
rates for both the Otto cycle and the Atkinson cycle are equal, ε = 8-10. Now at 
the same compression rate we’ll show the supply of heat by the isobare 2-5, on 
condition that the amounts of heat in the isobaric and isochoric processes are 
equal. It is now seen in the diagram that the compression rates for the Otto cycle 
and the Atkinson cycle are equal ε= 8-10. 

 And now, at the same compression rate, let's show the supply of heat by the 
isobar 2-5, on condition that the amounts of heat supplied in the isochoric and 
isobaric processes are equal. It is clearly seen in the diagram now that the upper 
temperature limit in Point 5 is significantly lower than in cases where the heat is 
supplied by the isochoric process in Point 3.

Today, the possibilities to increase the compression rates in the isochoric 
process for modern IC engines are practically exhausted, and the temperature in 
Point 3 is most  optimized for fuel combustion. That’s why we will  keep the 
temperature in Point 3 unchanged. This raises the question however: is there a 
way to increase the compression rate for gasoline IC engines? Our answer is: 
yes, such a possibility exists, and we will demonstrate it.

To achieve this,  we will  increase the compression rate by the amount of 
temperature difference 5-3 and obtain the temperature of compression rate in 
Point 6. From this Point, we will perform the isobaric heat supply process and 
obtain  the  temperature  in  Point  3.  The  entire  cycle  will  be  represented  as 
follows: gas compression 1-6; isobaric heat supply 6-3; the expansion process 
with the delivery of all the total work to the external consumer 3-4; isobaric heat 
removal in the cycle 4-1.
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Such  a  cycle  is  a  complete  cycle  with  isobaric  heat  supply,  and  the 
compression rate in such a cycle can be significantly higher than that in the Otto 
cycle. 

Known as the Briton cycle, it is used in gas turbine engines. And now let's 
compare all the known cycles used in internal combustion engines.

The internal combustion engines with the Diesel  cycle are more efficient 
than  those  with  the  Otto  cycle.  The  internal  combustion  engines  with  the 
Trinkler  cycles  are  also  more  efficient  than  those  with  the  Otto  cycle.  The 
internal  combustion engines  with the  Briton cycle,  which have even a  lower 
compression rate, are more efficient than the engines with the Otto cycle at the 
expense of a more complete expansion rate.

From  this  brief  comparison  of  known  internal  combustion  engines,  it 
becomes evident that the internal combustion engines with the Otto cycle are the 
least efficient. This raises the question: why aren't gas turbine engines used in 
automobiles? The answer is simple: the gas turbine engines cannot operate at 
low speeds, and their engine parameters are unsatisfactory at low power levels. 
The gas turbine engines exhibit good characteristics at power levels of around 
1000 horsepower or higher.

At the same time, it is important to note that the environmental impact of 
stroke-based internal combustion engines leaves much to be desired. And now, it 
is necessary to examine the reasons behind such an unsatisfactory state of affairs 
in this field.

To do this, we will examine the working principle of internal combustion 
engines as well as their construction, which is schematically shown in Fig. 12.4.
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The internal combustion engines (ICE) are divided into four-stroke and two-
stroke ones, but both modifications include the same structural elements, such as 
a crankshaft, a connecting rod, a piston, a cylinder, fuel delivery and ignition 
systems. The piston moves in the cylinder from the top dead center (TDC) to the 
bottom dead center (BDC). The piston and the cylinder above the piston create a 
closed space, whose volume increases or decreases as the piston moves. When 
the piston is at the TDC, a chamber for fuel combustion is formed above it. 
Looking at this heat engine scheme, it is easy to see that with the valves being 
closed, a closed volume of the chamber of fuel and fuel-air mixture combustion 
is formed above the piston, and the entire fuel combustion process is connected 
with the piston's movement.

The stroke-based operational cycle in the internal combustion engine (ICE) 
dictates  the engine's  cyclic  operation,  where a cycle  is  realized either in two 
strokes or four strokes. However, in both two-stroke and four-stroke ICEs an 
incomplete  Otto  cycle  is  realized,  resulting  in  significant  losses  in  overall  
efficiency.  The use of  ICEs in automobiles  leads to the situation where such 
engines  operate  with  an  alternating  number  of  the  crankshaft’s  rotations, 
resulting in insufficient time for the fuel combustion process.

 This method of fuel combustion entails the incomplete fuel combustion as 
well as the formation of toxic components in exhaust gases, both in gasoline and 
diesel  internal  combustion  engines,  which  deteriorates  the  environmental 
situation, especially in cities.

Now, it seems that something can be changed for the better, and such an 
attempt has been made by realizing the Atkins cycle.  However,  it  has failed. 
Presented below is a brief explanation of the reasons behind its failure.

The realization of the Atkins cycle in a stroke-based engine proceeds as 
follows:  the piston,  being in the TDC position with the opened intake valve, 
draws in the fuel-air mixture while moving towards the BDC position. And as 
the piston reaches the midpoint of its running, the intake valve closes, and the 
piston’s further movement proceeds with the thinning of gas above it. As the 
piston reaches the BDC position, it starts the compression stroke, in which the 
actual compression of the fuel-air mixture occurs after the piston reaches the 
midpoint  of  its  running,  with  the  degree  of  compression  determined  by  the 
gasoline  grade.  As the piston reaches  the TDC position,  the  fuel-air  mixture 
ignites, and after passing the TDC position, the power stroke begins, which runs 
from the TDC position to the BDC position. Then the exhaust valve opens, and 
the exhaust stroke takes place. After that the cycle recurs.
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The  Atkins  cycle  we  have  described  above  can  be  considered  to  be  a 
complete  cycle;  in  our case,  we have chosen the  coefficient  of  pre-expansion 
equal to two.

It  becomes  evident  that  the  functional  efficiency  with  such  a  cycle  will 
improve significantly, but at the same time the engine's metal-consumption will 
double, making the realization of this possibility less promising.

These issues regarding ICEs are well-known, and we have presented them 
briefly to demonstrate that the internal combustion engine with the Otto cycle is 
the worst of all possible options, since just the engine's design does not meet the 
thermodynamic requirements. Now, it seems that a new design is needed. When 
surveying the global patent fund, we see a great number of various ICE designs. 
Let’s pay attention to one of them.

It is a Wankel rotary engine. The design of this engine is quite original, and 
it implements the Otto cycle. But in fact, it is just a new design rather than a new 
engine. One of the design’s positive features is its level of metal consumption, 
which is three times lower than that of four-stroke internal combustion engines 
(ICEs). However, other characteristics leave much to be desired, that’s why its 
use is limited.

As for other engines indicated in the patent fund, we are inclined to note 
that they are indeed new designs that implement the Otto cycle. As a result, they 
are not widely used.

Such a situation appears solely as a result of that thermodynamics which is 
based on Carnot's axioms. We have shown a new thermodynamics, and now we 
are going to briefly demonstrate the possibilities of a new engine, which can be 
compared with all the known ones.

RPD. BR. Olkh. is a new engine with a new operating principle and a new 
design, which makes it possible to implement a complete cycle with the isobaric 
heat supply.  And consequently, when using gasoline, it becomes possible to use ε 
= 16, which makes it possible to achieve the highest efficiency.

The  full-flow  combustion  chamber  has  a  continuous  fuel  supply,  which 
ignites during the launch and burns continuously during the entire course of 
engine  operation.  The  full-flow  combustion  chamber  enjoys  a  significantly 
longer period of time for the complete combustion of fuel than in stroke-based 
internal  combustion  engines,  which  results  in  an  almost  100  per  cent  fuel 
utilization  coefficient.  This  creates  the  possibility  of  a  cleaner  exhaust.  The 
lubrication system is separate.

The full-flow combustion chamber is equipped with an insulation system, 
whose  inner  surface  reaches  a  high  temperature  during  engine  operation, 
contributing to a more complete combustion of fuel.

 The partition’s surface and the surfaces of the pistons facing the chamber 
also have thermal insulation. The use of thermal insulation has no impact on the 
operational  principle  of  the  RPD;  on  the  contrary,  the  RPD's  operational 
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principle makes it possible to use thermal insulation, which significantly reduces 
heat losses.

The  isobaric  heat  combustion  process  in  the  combustion  chamber  at 
different  RPD  rotation  speeds  is  maintained  by  changing  the  piston's  TDC 
position in relation to the combustion chamber’s windows, making it possible to 
regulate  the  inflow  and  outflow  of  the  working  medium  in  the  combustion 
chamber. The RPD can be designed for different types of fuel, since it is possible 
to  re-  adjust  the  compression rate  without  changing the  overall  design.  The 
metal  consumption of  the RPD is  significantly lower than that  of  traditional 
ICEs, ranging from 0.3 to 0.5 of metal consumption of four-stroke ICEs.

The RPD is a high-speed engine, and a given characteristic does not depend 
on the type of fuel chosen.

The RPD’s operational principle makes it possible to use the engine with the 
external supply of fuel.
        For this purpose, it is necessary to connect the heat exchanger’s pipes up to 
the intake and exhaust windows of the tank course instead of the combustion 
chamber.  These  actions  have  no  impact  at  all  on  the  RPD's  operational 
principle;  the  connection  of  the  heat  exchanger  influences  only  the  engine’s 
launching  time,  i.e.  the  time  required  to  create  in  the  heat  exchanger  the 
pressure corresponding to the design compression rate.

Now  we  can  say  that  a  given  RPD  meets  the  requirements  of 
thermodynamics and invite all our opponents to present an engine better than 
this one.

In  conclusion,  we  will  quote  Albert  Einstein’s  words  regarding  classical 
thermodynamics:

"The theory makes the bigger impression the simpler its premises are, the 
broader variety of objects it links, and the wider field of its application is. It is 
this  very  thing  in  classical  thermodynamics  that  has  made  the  deepest 
impression on me. It is the only physical theory of general application, in whose 
respect  I  am  sure  that  within  the  framework  of  applicability  of  its  basic 
concepts, it will never be overturned (to the special notice of skeptics)." (Ref. 4, 
p. 407).

One is inclined to add to this remark: "Blessed are those who believe in 
axioms and postulates." In physics, only laws based on correlation are valid.
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