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The hypothesis of Andrew Beal: general proof. 

 

 

The task itself is formulated as follows: If 

 

 

where: A, B, C, X, Y, Z are natural numbers and X, Y, Z,> 2, 

then A, B, C have a common prime devisor. 

 

The US $1 m worth prize will be paid to those who will solve this task or 

find a counter-example.  

We will provide some comments on the hypothesis of Andrew Beal. 

 (Andrew Beal’s Hypothesis and P. Fermat's Great Theorem are different 

theorems).  

 (P. Fermat's Great Theorem has nothing to do with the hypothesis of 

Andrew Beal).  

 (The trick is that the proof of Beal’s hypothesis means that Fermat's Great 

Theorem can be proved by contradiction. And mathematicians have been 

struggling to find such an elegant proof of P. Fermat's Great Theorem since 

1637. The author himself said that it existed, but at the same time, the proof of 

1995, containing 107 pages, cannot be called elegant in any way. And in the 17th 

century, it couldn’t be formulated in principle). 

 (Well, that does not mean for sure that he really had a proof). 

One can go on citing all sorts of comment on this topic, but the question is 

precisely whether we are in a position to understand all these issues in detail and 

to get a clear, unequivocal solution to the tasks. 

It is not difficult to realize that the hypothesis of Andrew Beal didn’t 

appear from scratch and in this connection, it is necessary to determine its 
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origins, as well as to understand what he wants. We will consider these issues in 

more detail. And now let's provide some historical facts. 

The hypothesis of Andrew Beal was put forward in 1993, and in 1995 

Andrew Wiles presented a proof of Fermat’s Great Theory that was declared 

well-grounded.  In 1997, Andrew Beal, a billionaire, announced a US $5,000 

worth reward for proving his hypothesis. Since then, its amount has been raised 

several times, to reach US$ 1 million nowadays. Andrew Wiles was offered to 

prove the hypothesis of Andrew Beale, but he refused to do that. 

And now let's see what the essence of Andrew Beal’s hypothesis is. Before 

we start to decide whether A, B, C have at least one common factor, it is 

necessary for us to find all solutions in natural integers for the indicated 

equation, paying attention to the condition for X, Y, Z,> 2.  And now let’s read 

Fermat’s remark. (On the contrary, it is impossible to factorize either a cube 

into two cubes, or a biquadrate into two biquadrates, and in general no degree, 

larger than a square, into two degrees with the same exponent.) We particularly 

accentuate the following (... and in general no degree, larger than a square…) 

Fermat's assertion seems to be valid only for an equation with any similar 

exponent of degree. We have generalized this question and now we demonstrate 

a proof with any exponent of degree larger than a square. 

Let's consider this question in detail, paying attention to the following (... 

larger than a square ...). But what does it mean? The condition of solvability of 

this task in natural integers for the sum or difference of any two numbers lies 

exclusively in n = 2 (see our proof for n = 2) /L. 2. p. 67/. The proof is based not 

on axioms and postulates, but on laws. What follows directly from a given proof 

is that at the level n = 2 we have found, calculated, presented etc. all, without 

exception, solutions in natural integers for the sum or difference of two numbers 

(See our theory of numbers and the definition of the number etc.).  

And now the following consequence ensues from the condition of solvability 

in integers: all solutions for the sum or difference of two numbers with the same 

exponent of degree greater than two are only fractional; the presence of any 

counter-example is now considered to be at variance with the law and therefore 

it is not possible in principle. 

Its application to Fermat’s Great Theorem makes sense, because we can 

take any A and B with the same exponent of degree greater than two, but then 

the result of the sum or difference for the same exponent on the base will only be 

fractional. 
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The condition of solvability in integers gives us one more consequence, 

which is applicable to the hypothesis of Andrew Beal. Let’s demonstrate it. We 

will consider this question in a general form and show it graphically to ensure its 

clear and transparent understanding. In Fig. 1 we have designated by the letter 

M any desired set of natural quantities that possess the property of quantity. 

From this infinite set, we’ll choose the entire infinity of natural commensurable 

quantities, realizing the following sequence: we take any smallest value per unit 

as the initial value, choose the next value twice as large as the initial value; the 

next value will be three times the initial value .... And we’ll continue doing so to 

infinity. (see Fig. 1. Row A). 
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In the formal notation, a series of commensurate natural integer quantities 

has the following form: 

                                             n + 1 

 In this series, any subsequent value is different from the previous one by 

the amount of the initial unit. But what does it mean? There are no gaps in this 

series, there is no uncertainty, there are no distortions, there are no two or more 

values; we show it exclusively on a quantitative level. A natural integer (a solid 

or three-dimensional square) uniquely corresponds to any natural integer-

valued unit. 

The number is nothing else but a reflection by our consciousness of the 

material world’s properties. (For a more complete substantiation of the theory 

of numbers, see our book). / L. 2/. 

Corollary 1. In the set M we have only incommensurate values; a 

comparison of an incommensurable value with a series of commensurable values 

leads to a discrepancy with any commensurable value. 

Corollary 2.  Only a fractional number unequivocally corresponds to an 

incommensurable natural value. 

Corollary 3.  At the level n = 2 we have chosen all, without exception, 

solutions in natural integers for the sum or difference of two numbers. Further: 

all the solutions, resulting from n = 2, are only fractional; and in this question 

there are no exceptions in principle, since any exception initially overturns the 

existence of the law. 

Let us formulate the following question: what determines the existence of 

the law? We will consider this issue separately. Apparently, we can form an 

equation with any set of actions or operations on numbers, but then we’ll put an 

equal-sign and write down the result looked for. The equal-sign characterizes 

the presence of balance between the left and the right sides of the equation. 

And now we’ll show the nature of this balance. Let’s take any 

commensurable unit value (see Row A., Fig. 1.), for example, the value under 

number 5 can be factorized into the number of initial units, and this number will 

be equal to five initial units. We’ve expressed one through the other and united 

one and the other with the equal- sign. Fulfilling such unification is possible 

exclusively at a quantitative level (see our definition of quantity). 
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And now we factorize the series A by the equivalent number of units and 

get a triangular number (see Row B). Such a number includes the properties of 

the sum and the properties of divisibility alike. Let’s supplement this number 

with the property of difference and we get a square number (see Row C). Such 

an addition involves the emergence of the properties of difference and product. 

Now we take, as an initial unit, any infinitesimal commensurable natural 

value and express the square number with respect to an infinitesimal quantity, 

and we obtain a solid or three-dimensional square number in the geometric 

form, which represents a series of natural integers. And the properties of 

natural integers afford us an opportunity to perform actions on numbers, such 

as: finding the sum, the difference and a ratio. And here the following question 

arises: what is a product? A product doesn’t represent any action on a number, 

but it is only a characteristic of the natural value’s position (See our plotting for 

n = 3; 4; 5 and any degree). /L. 2/  

Corollary 4. Any number of the n degree is a volume. Then Andrew Beal’s 

entire task comes down to the following form: 

 

                             VA+VВ = VC 

We read that the volume of the number A plus the volume of the number B 

is equal to the volume of the number C.  This reduces the entire Fermat’s Great 

Theory to this form, and this reduces the problem for n = 2 to this form, too. The 

natural integer has a R3 dimension. A dimension is a characteristic of belonging 

to a series of natural integers. All numbers with any exponent of degree are 

nothing else than the calculus of volume. Further, the line, square, structure, etc. 

are all the elements of the number. Now the characteristic of belonging to the 

law of distribution of commensurable natural integers represents not the actions 

on the numbers, but exactly the equal- sign, since it is the equal-sign that 

determines the existence of a unique correlation between a series of 

commensurable natural integers and a series of natural integers. And if there is 

an equal-sign in the equation, then the law of distribution of natural integers is 

uniquely valid for a given equation, and no exceptions are possible in principle. 

Further, if there is no equal sign, any exceptions are possible.  

Corollary 5. At the level n = 2, we have chosen all the solutions without 

exception in natural integers. And then all the solutions falling out of n = 2 will 

only be fractional. Now it becomes possible to formulate uniquely the general 
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principle of independence of solvability in integers for the sum or difference of 

two numbers and for no degree at all, except the second degree, for a given task. 

Let’s show how this result is applicable to the task of Andrew Beal. We can 

arbitrarily choose any natural numbers A, B, C; further, we can take any 

natural exponents of X, Y. And here the following question arises: will the 

exponent of Z be a natural set? 

The answer is as follows: under these conditions, the exponent of Z is, only 

and only, a fractional set. Then we can arbitrarily choose any natural exponents 

of X, Y, Z, and any natural numbers A, B. And again the following question 

arises: will the set C be a natural set? 

The answer is as follows: the base of the number C is, only and only, a 

fractional set. 

 

            Another question arises here: what is 1, 2, 3, 4, 5, 6? From time 

immemorial, people supposed that they were all the numbers; in fact, we show 

symbols, signs and numbers; but in substance, we show not the number, but a 

written form of speech that characterizes the number or the set. The written 

form of speech has a continuation in the form of algebra, or formal logic. At the 

level of formal logic, in principle, we cannot obtain clear and transparent 

evidence for both the Great Theorem of Fermat and the hypothesis of Andrew 

Beal. These two tasks have different forms, but the same content. 

 

                Formal logic represents a blind method that relies on axioms and 

postulates, as well as on the correct performance of actions on symbols; but it 

does not allow us to get a general view of the entire task, and even to 

comprehend the existence of the problem and understand the ways of its 

solution. Here is a simple example: throughout the history of mathematics, it 

was not realized that at the level n = 2 we chose all, without exception, solutions 

in integers for the sum or difference of two numbers. And this question is 

directly connected with the fundamental questions of the theory of numbers and 

those laws, which they are subject to. And the theorem of Pythagoras absolutely 

fails to give us a complete idea of the problem being solved. WHAT is the 

common and what is the quotient? It is this very question that P. Fermat asked 

us. He knew the answer to this question and considerably helped us to 

understand the fundamental problems of the theory of numbers. Between the 

number and the symbol (figures), there is a simple correlation; everything we do 
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with numbers is reflected in numbers, and not vice versa; the laws are general, 

and everything else is special. 

 

               Considering the fundamental foundations of the theory of numbers, it 

becomes obvious that there is a direct interrelation with the tenets of the 

subconscious and consciousness. The source of any of our knowledge is the 

world; man and the world are in unity; we have at our disposal all sorts of 

knowledge. The whole body of knowledge possesses the property of 

direction. The general direction for man is determined by the necessity to 

survive and subsequently to conquer illnesses and death in all its manifestations. 

This necessity, in turn, entails a steady demand of knowledge of the secrets of 

nature and the world as a whole. In this field the application of quantitative 

methods, or the use of numbers, is very important. The use of numbers is 

determined by their properties. Further, if the numbers possess the properties that 

are common to the material world, then they are applicable to the study of the 

material world; but if the numbers have no common properties with the material 

world, then they are not applicable to the study of the material world. Further, if 

the numbers reflect only incomplete properties of the material world, then we 

will get an incomplete picture of the material world or a subjective view of the 

world. To understand this question, we will explain it using a simple example. 

(see Fig.2). 

 



 

10 

In this figure, we demonstrated exactly the number, or in other words, the 

system of coordinates. Everything that we show on the frontal plane and indicate 

by the letter (V) is called a projection, another term is a shadow.  

On the frontal plane, we show the shadow of some object. Let’s consider 

what a numerical axis is. Let's project the shadow on the X axis, and we’ll get 

the segment (ad). The numeric axis is represented by an edge of a number, and 

the projection on X is a shadow from the shadow, which is represented by the 

segment (ab); any segment on the X axis, and equally on the numeric axis, is a 

shadow from the shadow. And here the following question arises: does the idea 

of the number (the number is an account, the number is 1, 2, 3, 4, 5, 6, ... further 

the numerical axis, further the axioms, etc.) represent a complete idea or is this 

view narrow? 

As far as this question is concerned, P. Fermat left the following comments 

on the arithmetic of Diophantus. 

1. A full proof with comprehensive explanations cannot be placed in the 

margins because of their narrowness. /L. 1, p. 311/. 

2. I discovered a really excellent proof of this, but these margins are too 

small for it. /L. 1, p. 197/. 

A dim-witted person will understand that the page margins are too small. 

In fact, we are talking about the scope of view of the number in the entire 

arithmetic of Diophantus. And P. Fermat left the following remark on this 

question. 

3. It is impossible here to give his proof, which depends on numerous and 

most intimate secrets of the science of numbers; we intend to devote a whole 

book to this subject, in a move to promote, in a remarkable way, this part of 

Arithmetic beyond the bounds known in ancient times /L. 1, p. 242/. 

This observation directly points to the fundamental questions of the theory 

of numbers; now it becomes obvious that the presence or absence of paper has 

no relation to this matter at all. P. Fermat writes about science; science is only 

what widens our boundaries of understanding and knowledge of the world; 

science relies solely on laws, while everything else is just a branch of knowledge 

or a kind of pseudo-science. Since what is excusable for Diophantus, is no longer 

forgivable for Peano, and all the more is unforgivable for modern 

mathematicians. Andrew Wiles shows us the proof of Fermat’s Great Theorem 

at the level of recalculation of points on the numerical axis and then sums it up. 
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So  P. Fermat wasn’t mistaken: there is no solution in natural integers; this 

was already clear after Kummer's works, but it was also clear later that a 

complete stagnation was observed in the field of fundamental problems in the 

theory of numbers. 

With his hypothesis Andrew Beal shows us much more sanity than all 

mathematicians put together, because, having formulated his hypothesis, he 

gives a strong objection and even a powerful objection to Andrew Wiles, as well 

as to all known proofs of Fermat’s Great Theorem. If you have a complete proof 

of Fermat’s Great Theorem, then these proofs are common to the hypothesis of 

Andrew Beal. But now looking from this position, all known proofs of both 

Fermat’s Great Theorem and the hypotheses of Andrew Beal are only 

speculation on P. Fermat's result, because there is no need to look for an answer 

to the question whether or not there is a solution in natural numbers. P. Fermat 

gave us the answer to this question, precisely in order that all efforts were 

directed to finding a solution to why there is no solution and no solution at all for 

any degree, except the second degree. The proofs provided here are direct, 

complete, intuitively clear and general.   

Reference information. You can concentrate on finding a counter-example 

for the hypothesis of Andrew Beal. For the time being, the values of all six 

variables have been checked up to 1000. That is, in a successful counter- 

example, at least one variable must exceed 1000. It is quite obvious that the 

history of Fermat’s Great Theorem (but now on the example of the hypothesis of 

Andrew Beal) repeats itself. And here the following question arises: can the 

mathematicians turn to the fundamental foundations of the theory of numbers 

at all? 

 

A. I. Olkhovenko  
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